| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordpwsucss | Unicode version | ||
| Description: The collection of
ordinals in the power class of an ordinal is a
superset of its successor.
We can think of
Constructively |
| Ref | Expression |
|---|---|
| ordpwsucss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordsuc 4629 |
. . . . 5
| |
| 2 | ordelon 4448 |
. . . . . 6
| |
| 3 | 2 | ex 115 |
. . . . 5
|
| 4 | 1, 3 | sylbi 121 |
. . . 4
|
| 5 | ordtr 4443 |
. . . . 5
| |
| 6 | trsucss 4488 |
. . . . 5
| |
| 7 | 5, 6 | syl 14 |
. . . 4
|
| 8 | 4, 7 | jcad 307 |
. . 3
|
| 9 | elin 3364 |
. . . 4
| |
| 10 | velpw 3633 |
. . . . 5
| |
| 11 | 10 | anbi2ci 459 |
. . . 4
|
| 12 | 9, 11 | bitri 184 |
. . 3
|
| 13 | 8, 12 | imbitrrdi 162 |
. 2
|
| 14 | 13 | ssrdv 3207 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-setind 4603 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-uni 3865 df-tr 4159 df-iord 4431 df-on 4433 df-suc 4436 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |