| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordpwsucss | Unicode version | ||
| Description: The collection of
ordinals in the power class of an ordinal is a
superset of its successor.
We can think of
Constructively |
| Ref | Expression |
|---|---|
| ordpwsucss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordsuc 4600 |
. . . . 5
| |
| 2 | ordelon 4419 |
. . . . . 6
| |
| 3 | 2 | ex 115 |
. . . . 5
|
| 4 | 1, 3 | sylbi 121 |
. . . 4
|
| 5 | ordtr 4414 |
. . . . 5
| |
| 6 | trsucss 4459 |
. . . . 5
| |
| 7 | 5, 6 | syl 14 |
. . . 4
|
| 8 | 4, 7 | jcad 307 |
. . 3
|
| 9 | elin 3347 |
. . . 4
| |
| 10 | velpw 3613 |
. . . . 5
| |
| 11 | 10 | anbi2ci 459 |
. . . 4
|
| 12 | 9, 11 | bitri 184 |
. . 3
|
| 13 | 8, 12 | imbitrrdi 162 |
. 2
|
| 14 | 13 | ssrdv 3190 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-setind 4574 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-uni 3841 df-tr 4133 df-iord 4402 df-on 4404 df-suc 4407 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |