Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ordpwsucss | Unicode version |
Description: The collection of
ordinals in the power class of an ordinal is a
superset of its successor.
We can think of as another possible definition of successor, which would be equivalent to df-suc 4349 given excluded middle. It is an ordinal, and has some successor-like properties. For example, if then both (onunisuci 4410) and (onuniss2 4489). Constructively and cannot be shown to be equivalent (as proved at ordpwsucexmid 4547). (Contributed by Jim Kingdon, 21-Jul-2019.) |
Ref | Expression |
---|---|
ordpwsucss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordsuc 4540 | . . . . 5 | |
2 | ordelon 4361 | . . . . . 6 | |
3 | 2 | ex 114 | . . . . 5 |
4 | 1, 3 | sylbi 120 | . . . 4 |
5 | ordtr 4356 | . . . . 5 | |
6 | trsucss 4401 | . . . . 5 | |
7 | 5, 6 | syl 14 | . . . 4 |
8 | 4, 7 | jcad 305 | . . 3 |
9 | elin 3305 | . . . 4 | |
10 | velpw 3566 | . . . . 5 | |
11 | 10 | anbi2ci 455 | . . . 4 |
12 | 9, 11 | bitri 183 | . . 3 |
13 | 8, 12 | syl6ibr 161 | . 2 |
14 | 13 | ssrdv 3148 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wcel 2136 cin 3115 wss 3116 cpw 3559 wtr 4080 word 4340 con0 4341 csuc 4343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-tr 4081 df-iord 4344 df-on 4346 df-suc 4349 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |