ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordpwsucss Unicode version

Theorem ordpwsucss 4659
Description: The collection of ordinals in the power class of an ordinal is a superset of its successor.

We can think of  ( ~P A  i^i  On ) as another possible definition of successor, which would be equivalent to df-suc 4462 given excluded middle. It is an ordinal, and has some successor-like properties. For example, if  A  e.  On then both  U. suc  A  =  A (onunisuci 4523) and  U. { x  e.  On  |  x  C_  A }  =  A (onuniss2 4604).

Constructively  ( ~P A  i^i  On ) and  suc  A cannot be shown to be equivalent (as proved at ordpwsucexmid 4662). (Contributed by Jim Kingdon, 21-Jul-2019.)

Assertion
Ref Expression
ordpwsucss  |-  ( Ord 
A  ->  suc  A  C_  ( ~P A  i^i  On ) )

Proof of Theorem ordpwsucss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ordsuc 4655 . . . . 5  |-  ( Ord 
A  <->  Ord  suc  A )
2 ordelon 4474 . . . . . 6  |-  ( ( Ord  suc  A  /\  x  e.  suc  A )  ->  x  e.  On )
32ex 115 . . . . 5  |-  ( Ord 
suc  A  ->  ( x  e.  suc  A  ->  x  e.  On )
)
41, 3sylbi 121 . . . 4  |-  ( Ord 
A  ->  ( x  e.  suc  A  ->  x  e.  On ) )
5 ordtr 4469 . . . . 5  |-  ( Ord 
A  ->  Tr  A
)
6 trsucss 4514 . . . . 5  |-  ( Tr  A  ->  ( x  e.  suc  A  ->  x  C_  A ) )
75, 6syl 14 . . . 4  |-  ( Ord 
A  ->  ( x  e.  suc  A  ->  x  C_  A ) )
84, 7jcad 307 . . 3  |-  ( Ord 
A  ->  ( x  e.  suc  A  ->  (
x  e.  On  /\  x  C_  A ) ) )
9 elin 3387 . . . 4  |-  ( x  e.  ( ~P A  i^i  On )  <->  ( x  e.  ~P A  /\  x  e.  On ) )
10 velpw 3656 . . . . 5  |-  ( x  e.  ~P A  <->  x  C_  A
)
1110anbi2ci 459 . . . 4  |-  ( ( x  e.  ~P A  /\  x  e.  On ) 
<->  ( x  e.  On  /\  x  C_  A )
)
129, 11bitri 184 . . 3  |-  ( x  e.  ( ~P A  i^i  On )  <->  ( x  e.  On  /\  x  C_  A ) )
138, 12imbitrrdi 162 . 2  |-  ( Ord 
A  ->  ( x  e.  suc  A  ->  x  e.  ( ~P A  i^i  On ) ) )
1413ssrdv 3230 1  |-  ( Ord 
A  ->  suc  A  C_  ( ~P A  i^i  On ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2200    i^i cin 3196    C_ wss 3197   ~Pcpw 3649   Tr wtr 4182   Ord word 4453   Oncon0 4454   suc csuc 4456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3889  df-tr 4183  df-iord 4457  df-on 4459  df-suc 4462
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator