ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordpwsucss Unicode version

Theorem ordpwsucss 4599
Description: The collection of ordinals in the power class of an ordinal is a superset of its successor.

We can think of  ( ~P A  i^i  On ) as another possible definition of successor, which would be equivalent to df-suc 4402 given excluded middle. It is an ordinal, and has some successor-like properties. For example, if  A  e.  On then both  U. suc  A  =  A (onunisuci 4463) and  U. { x  e.  On  |  x  C_  A }  =  A (onuniss2 4544).

Constructively  ( ~P A  i^i  On ) and  suc  A cannot be shown to be equivalent (as proved at ordpwsucexmid 4602). (Contributed by Jim Kingdon, 21-Jul-2019.)

Assertion
Ref Expression
ordpwsucss  |-  ( Ord 
A  ->  suc  A  C_  ( ~P A  i^i  On ) )

Proof of Theorem ordpwsucss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ordsuc 4595 . . . . 5  |-  ( Ord 
A  <->  Ord  suc  A )
2 ordelon 4414 . . . . . 6  |-  ( ( Ord  suc  A  /\  x  e.  suc  A )  ->  x  e.  On )
32ex 115 . . . . 5  |-  ( Ord 
suc  A  ->  ( x  e.  suc  A  ->  x  e.  On )
)
41, 3sylbi 121 . . . 4  |-  ( Ord 
A  ->  ( x  e.  suc  A  ->  x  e.  On ) )
5 ordtr 4409 . . . . 5  |-  ( Ord 
A  ->  Tr  A
)
6 trsucss 4454 . . . . 5  |-  ( Tr  A  ->  ( x  e.  suc  A  ->  x  C_  A ) )
75, 6syl 14 . . . 4  |-  ( Ord 
A  ->  ( x  e.  suc  A  ->  x  C_  A ) )
84, 7jcad 307 . . 3  |-  ( Ord 
A  ->  ( x  e.  suc  A  ->  (
x  e.  On  /\  x  C_  A ) ) )
9 elin 3342 . . . 4  |-  ( x  e.  ( ~P A  i^i  On )  <->  ( x  e.  ~P A  /\  x  e.  On ) )
10 velpw 3608 . . . . 5  |-  ( x  e.  ~P A  <->  x  C_  A
)
1110anbi2ci 459 . . . 4  |-  ( ( x  e.  ~P A  /\  x  e.  On ) 
<->  ( x  e.  On  /\  x  C_  A )
)
129, 11bitri 184 . . 3  |-  ( x  e.  ( ~P A  i^i  On )  <->  ( x  e.  On  /\  x  C_  A ) )
138, 12imbitrrdi 162 . 2  |-  ( Ord 
A  ->  ( x  e.  suc  A  ->  x  e.  ( ~P A  i^i  On ) ) )
1413ssrdv 3185 1  |-  ( Ord 
A  ->  suc  A  C_  ( ~P A  i^i  On ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2164    i^i cin 3152    C_ wss 3153   ~Pcpw 3601   Tr wtr 4127   Ord word 4393   Oncon0 4394   suc csuc 4396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-uni 3836  df-tr 4128  df-iord 4397  df-on 4399  df-suc 4402
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator