ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ontrci GIF version

Theorem ontrci 4473
Description: An ordinal number is a transitive class. (Contributed by NM, 11-Jun-1994.)
Hypothesis
Ref Expression
on.1 𝐴 ∈ On
Assertion
Ref Expression
ontrci Tr 𝐴

Proof of Theorem ontrci
StepHypRef Expression
1 on.1 . . 3 𝐴 ∈ On
21onordi 4472 . 2 Ord 𝐴
3 ordtr 4424 . 2 (Ord 𝐴 → Tr 𝐴)
42, 3ax-mp 5 1 Tr 𝐴
Colors of variables: wff set class
Syntax hints:  wcel 2175  Tr wtr 4141  Ord word 4408  Oncon0 4409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-in 3171  df-ss 3178  df-uni 3850  df-tr 4142  df-iord 4412  df-on 4414
This theorem is referenced by:  onunisuci  4478  exmidonfinlem  7300  bj-el2oss1o  15643  nnsf  15875
  Copyright terms: Public domain W3C validator