| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ontrci | GIF version | ||
| Description: An ordinal number is a transitive class. (Contributed by NM, 11-Jun-1994.) |
| Ref | Expression |
|---|---|
| on.1 | ⊢ 𝐴 ∈ On |
| Ref | Expression |
|---|---|
| ontrci | ⊢ Tr 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | on.1 | . . 3 ⊢ 𝐴 ∈ On | |
| 2 | 1 | onordi 4472 | . 2 ⊢ Ord 𝐴 |
| 3 | ordtr 4424 | . 2 ⊢ (Ord 𝐴 → Tr 𝐴) | |
| 4 | 2, 3 | ax-mp 5 | 1 ⊢ Tr 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 Tr wtr 4141 Ord word 4408 Oncon0 4409 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-in 3171 df-ss 3178 df-uni 3850 df-tr 4142 df-iord 4412 df-on 4414 |
| This theorem is referenced by: onunisuci 4478 exmidonfinlem 7300 bj-el2oss1o 15643 nnsf 15875 |
| Copyright terms: Public domain | W3C validator |