ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ontrci GIF version

Theorem ontrci 4412
Description: An ordinal number is a transitive class. (Contributed by NM, 11-Jun-1994.)
Hypothesis
Ref Expression
on.1 𝐴 ∈ On
Assertion
Ref Expression
ontrci Tr 𝐴

Proof of Theorem ontrci
StepHypRef Expression
1 on.1 . . 3 𝐴 ∈ On
21onordi 4411 . 2 Ord 𝐴
3 ordtr 4363 . 2 (Ord 𝐴 → Tr 𝐴)
42, 3ax-mp 5 1 Tr 𝐴
Colors of variables: wff set class
Syntax hints:  wcel 2141  Tr wtr 4087  Ord word 4347  Oncon0 4348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-in 3127  df-ss 3134  df-uni 3797  df-tr 4088  df-iord 4351  df-on 4353
This theorem is referenced by:  onunisuci  4417  exmidonfinlem  7170  bj-el2oss1o  13809  nnsf  14038
  Copyright terms: Public domain W3C validator