Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ontrci | GIF version |
Description: An ordinal number is a transitive class. (Contributed by NM, 11-Jun-1994.) |
Ref | Expression |
---|---|
on.1 | ⊢ 𝐴 ∈ On |
Ref | Expression |
---|---|
ontrci | ⊢ Tr 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | on.1 | . . 3 ⊢ 𝐴 ∈ On | |
2 | 1 | onordi 4404 | . 2 ⊢ Ord 𝐴 |
3 | ordtr 4356 | . 2 ⊢ (Ord 𝐴 → Tr 𝐴) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ Tr 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 Tr wtr 4080 Ord word 4340 Oncon0 4341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-in 3122 df-ss 3129 df-uni 3790 df-tr 4081 df-iord 4344 df-on 4346 |
This theorem is referenced by: onunisuci 4410 exmidonfinlem 7149 bj-el2oss1o 13655 nnsf 13885 |
Copyright terms: Public domain | W3C validator |