| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > onun2i | Unicode version | ||
| Description: The union of two ordinal numbers is an ordinal number. (Contributed by NM, 13-Jun-1994.) (Constructive proof by Jim Kingdon, 25-Jul-2019.) |
| Ref | Expression |
|---|---|
| onun2i.1 |
|
| onun2i.2 |
|
| Ref | Expression |
|---|---|
| onun2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onun2i.1 |
. 2
| |
| 2 | onun2i.2 |
. 2
| |
| 3 | onun2 4556 |
. 2
| |
| 4 | 1, 2, 3 | mp2an 426 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-uni 3865 df-tr 4159 df-iord 4431 df-on 4433 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |