ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onun2i Unicode version

Theorem onun2i 4467
Description: The union of two ordinal numbers is an ordinal number. (Contributed by NM, 13-Jun-1994.) (Constructive proof by Jim Kingdon, 25-Jul-2019.)
Hypotheses
Ref Expression
onun2i.1  |-  A  e.  On
onun2i.2  |-  B  e.  On
Assertion
Ref Expression
onun2i  |-  ( A  u.  B )  e.  On

Proof of Theorem onun2i
StepHypRef Expression
1 onun2i.1 . 2  |-  A  e.  On
2 onun2i.2 . 2  |-  B  e.  On
3 onun2 4466 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  u.  B
)  e.  On )
41, 2, 3mp2an 423 1  |-  ( A  u.  B )  e.  On
Colors of variables: wff set class
Syntax hints:    e. wcel 2136    u. cun 3113   Oncon0 4340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pr 4186  ax-un 4410
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ral 2448  df-rex 2449  df-v 2727  df-un 3119  df-in 3121  df-ss 3128  df-sn 3581  df-pr 3582  df-uni 3789  df-tr 4080  df-iord 4343  df-on 4345
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator