ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordsson Unicode version

Theorem ordsson 4493
Description: Any ordinal class is a subclass of the class of ordinal numbers. Corollary 7.15 of [TakeutiZaring] p. 38. (Contributed by NM, 18-May-1994.)
Assertion
Ref Expression
ordsson  |-  ( Ord 
A  ->  A  C_  On )

Proof of Theorem ordsson
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ordelon 4385 . . 3  |-  ( ( Ord  A  /\  x  e.  A )  ->  x  e.  On )
21ex 115 . 2  |-  ( Ord 
A  ->  ( x  e.  A  ->  x  e.  On ) )
32ssrdv 3163 1  |-  ( Ord 
A  ->  A  C_  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2148    C_ wss 3131   Ord word 4364   Oncon0 4365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-in 3137  df-ss 3144  df-uni 3812  df-tr 4104  df-iord 4368  df-on 4370
This theorem is referenced by:  onss  4494  orduni  4496  iordsmo  6301  tfrlemi14d  6337  tfr1onlemssrecs  6343  tfri1dALT  6355  tfrcllemssrecs  6356  ordiso2  7037
  Copyright terms: Public domain W3C validator