ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordsson Unicode version

Theorem ordsson 4558
Description: Any ordinal class is a subclass of the class of ordinal numbers. Corollary 7.15 of [TakeutiZaring] p. 38. (Contributed by NM, 18-May-1994.)
Assertion
Ref Expression
ordsson  |-  ( Ord 
A  ->  A  C_  On )

Proof of Theorem ordsson
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ordelon 4448 . . 3  |-  ( ( Ord  A  /\  x  e.  A )  ->  x  e.  On )
21ex 115 . 2  |-  ( Ord 
A  ->  ( x  e.  A  ->  x  e.  On ) )
32ssrdv 3207 1  |-  ( Ord 
A  ->  A  C_  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2178    C_ wss 3174   Ord word 4427   Oncon0 4428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-in 3180  df-ss 3187  df-uni 3865  df-tr 4159  df-iord 4431  df-on 4433
This theorem is referenced by:  onss  4559  orduni  4561  iordsmo  6406  tfrlemi14d  6442  tfr1onlemssrecs  6448  tfri1dALT  6460  tfrcllemssrecs  6461  ordiso2  7163
  Copyright terms: Public domain W3C validator