ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordsson Unicode version

Theorem ordsson 4539
Description: Any ordinal class is a subclass of the class of ordinal numbers. Corollary 7.15 of [TakeutiZaring] p. 38. (Contributed by NM, 18-May-1994.)
Assertion
Ref Expression
ordsson  |-  ( Ord 
A  ->  A  C_  On )

Proof of Theorem ordsson
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ordelon 4429 . . 3  |-  ( ( Ord  A  /\  x  e.  A )  ->  x  e.  On )
21ex 115 . 2  |-  ( Ord 
A  ->  ( x  e.  A  ->  x  e.  On ) )
32ssrdv 3198 1  |-  ( Ord 
A  ->  A  C_  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2175    C_ wss 3165   Ord word 4408   Oncon0 4409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-in 3171  df-ss 3178  df-uni 3850  df-tr 4142  df-iord 4412  df-on 4414
This theorem is referenced by:  onss  4540  orduni  4542  iordsmo  6382  tfrlemi14d  6418  tfr1onlemssrecs  6424  tfri1dALT  6436  tfrcllemssrecs  6437  ordiso2  7136
  Copyright terms: Public domain W3C validator