ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordsson Unicode version

Theorem ordsson 4271
Description: Any ordinal class is a subclass of the class of ordinal numbers. Corollary 7.15 of [TakeutiZaring] p. 38. (Contributed by NM, 18-May-1994.)
Assertion
Ref Expression
ordsson  |-  ( Ord 
A  ->  A  C_  On )

Proof of Theorem ordsson
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ordelon 4173 . . 3  |-  ( ( Ord  A  /\  x  e.  A )  ->  x  e.  On )
21ex 113 . 2  |-  ( Ord 
A  ->  ( x  e.  A  ->  x  e.  On ) )
32ssrdv 3016 1  |-  ( Ord 
A  ->  A  C_  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1434    C_ wss 2984   Ord word 4152   Oncon0 4153
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-v 2614  df-in 2990  df-ss 2997  df-uni 3628  df-tr 3902  df-iord 4156  df-on 4158
This theorem is referenced by:  onss  4272  orduni  4274  iordsmo  5992  tfrlemi14d  6028  tfr1onlemssrecs  6034  tfri1dALT  6046  tfrcllemssrecs  6047  ordiso2  6633
  Copyright terms: Public domain W3C validator