ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onun2i GIF version

Theorem onun2i 4580
Description: The union of two ordinal numbers is an ordinal number. (Contributed by NM, 13-Jun-1994.) (Constructive proof by Jim Kingdon, 25-Jul-2019.)
Hypotheses
Ref Expression
onun2i.1 𝐴 ∈ On
onun2i.2 𝐵 ∈ On
Assertion
Ref Expression
onun2i (𝐴𝐵) ∈ On

Proof of Theorem onun2i
StepHypRef Expression
1 onun2i.1 . 2 𝐴 ∈ On
2 onun2i.2 . 2 𝐵 ∈ On
3 onun2 4579 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵) ∈ On)
41, 2, 3mp2an 426 1 (𝐴𝐵) ∈ On
Colors of variables: wff set class
Syntax hints:  wcel 2200  cun 3195  Oncon0 4451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pr 4292  ax-un 4521
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-uni 3888  df-tr 4182  df-iord 4454  df-on 4456
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator