| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > onun2i | GIF version | ||
| Description: The union of two ordinal numbers is an ordinal number. (Contributed by NM, 13-Jun-1994.) (Constructive proof by Jim Kingdon, 25-Jul-2019.) | 
| Ref | Expression | 
|---|---|
| onun2i.1 | ⊢ 𝐴 ∈ On | 
| onun2i.2 | ⊢ 𝐵 ∈ On | 
| Ref | Expression | 
|---|---|
| onun2i | ⊢ (𝐴 ∪ 𝐵) ∈ On | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | onun2i.1 | . 2 ⊢ 𝐴 ∈ On | |
| 2 | onun2i.2 | . 2 ⊢ 𝐵 ∈ On | |
| 3 | onun2 4526 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∪ 𝐵) ∈ On) | |
| 4 | 1, 2, 3 | mp2an 426 | 1 ⊢ (𝐴 ∪ 𝐵) ∈ On | 
| Colors of variables: wff set class | 
| Syntax hints: ∈ wcel 2167 ∪ cun 3155 Oncon0 4398 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-uni 3840 df-tr 4132 df-iord 4401 df-on 4403 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |