| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > onun2i | GIF version | ||
| Description: The union of two ordinal numbers is an ordinal number. (Contributed by NM, 13-Jun-1994.) (Constructive proof by Jim Kingdon, 25-Jul-2019.) |
| Ref | Expression |
|---|---|
| onun2i.1 | ⊢ 𝐴 ∈ On |
| onun2i.2 | ⊢ 𝐵 ∈ On |
| Ref | Expression |
|---|---|
| onun2i | ⊢ (𝐴 ∪ 𝐵) ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onun2i.1 | . 2 ⊢ 𝐴 ∈ On | |
| 2 | onun2i.2 | . 2 ⊢ 𝐵 ∈ On | |
| 3 | onun2 4579 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∪ 𝐵) ∈ On) | |
| 4 | 1, 2, 3 | mp2an 426 | 1 ⊢ (𝐴 ∪ 𝐵) ∈ On |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 ∪ cun 3195 Oncon0 4451 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pr 4292 ax-un 4521 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-uni 3888 df-tr 4182 df-iord 4454 df-on 4456 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |