Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelopaba Unicode version

Theorem opelopaba 4060
 Description: The law of concretion. Theorem 9.5 of [Quine] p. 61. (Contributed by Mario Carneiro, 19-Dec-2013.)
Hypotheses
Ref Expression
opelopaba.1
opelopaba.2
opelopaba.3
Assertion
Ref Expression
opelopaba
Distinct variable groups:   ,,   ,,   ,,
Allowed substitution hints:   (,)

Proof of Theorem opelopaba
StepHypRef Expression
1 opelopaba.1 . 2
2 opelopaba.2 . 2
3 opelopaba.3 . . 3
43opelopabga 4057 . 2
51, 2, 4mp2an 417 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 102   wb 103   wceq 1287   wcel 1436  cvv 2614  cop 3428  copab 3867 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3925  ax-pow 3977  ax-pr 4003 This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-v 2616  df-un 2990  df-in 2992  df-ss 2999  df-pw 3411  df-sn 3431  df-pr 3432  df-op 3434  df-opab 3869 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator