ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelrn Unicode version

Theorem opelrn 4741
Description: Membership of second member of an ordered pair in a range. (Contributed by NM, 23-Feb-1997.)
Hypotheses
Ref Expression
brelrn.1  |-  A  e. 
_V
brelrn.2  |-  B  e. 
_V
Assertion
Ref Expression
opelrn  |-  ( <. A ,  B >.  e.  C  ->  B  e.  ran  C )

Proof of Theorem opelrn
StepHypRef Expression
1 df-br 3898 . 2  |-  ( A C B  <->  <. A ,  B >.  e.  C )
2 brelrn.1 . . 3  |-  A  e. 
_V
3 brelrn.2 . . 3  |-  B  e. 
_V
42, 3brelrn 4740 . 2  |-  ( A C B  ->  B  e.  ran  C )
51, 4sylbir 134 1  |-  ( <. A ,  B >.  e.  C  ->  B  e.  ran  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1463   _Vcvv 2658   <.cop 3498   class class class wbr 3897   ran crn 4508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-v 2660  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-br 3898  df-opab 3958  df-cnv 4515  df-dm 4517  df-rn 4518
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator