ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelrn Unicode version

Theorem opelrn 4845
Description: Membership of second member of an ordered pair in a range. (Contributed by NM, 23-Feb-1997.)
Hypotheses
Ref Expression
brelrn.1  |-  A  e. 
_V
brelrn.2  |-  B  e. 
_V
Assertion
Ref Expression
opelrn  |-  ( <. A ,  B >.  e.  C  ->  B  e.  ran  C )

Proof of Theorem opelrn
StepHypRef Expression
1 df-br 3990 . 2  |-  ( A C B  <->  <. A ,  B >.  e.  C )
2 brelrn.1 . . 3  |-  A  e. 
_V
3 brelrn.2 . . 3  |-  B  e. 
_V
42, 3brelrn 4844 . 2  |-  ( A C B  ->  B  e.  ran  C )
51, 4sylbir 134 1  |-  ( <. A ,  B >.  e.  C  ->  B  e.  ran  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2141   _Vcvv 2730   <.cop 3586   class class class wbr 3989   ran crn 4612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-cnv 4619  df-dm 4621  df-rn 4622
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator