ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  releldm Unicode version

Theorem releldm 4902
Description: The first argument of a binary relation belongs to its domain. (Contributed by NM, 2-Jul-2008.)
Assertion
Ref Expression
releldm  |-  ( ( Rel  R  /\  A R B )  ->  A  e.  dom  R )

Proof of Theorem releldm
StepHypRef Expression
1 brrelex 4704 . 2  |-  ( ( Rel  R  /\  A R B )  ->  A  e.  _V )
2 brrelex2 4705 . 2  |-  ( ( Rel  R  /\  A R B )  ->  B  e.  _V )
3 simpr 110 . 2  |-  ( ( Rel  R  /\  A R B )  ->  A R B )
4 breldmg 4873 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  A R B )  ->  A  e.  dom  R )
51, 2, 3, 4syl3anc 1249 1  |-  ( ( Rel  R  /\  A R B )  ->  A  e.  dom  R )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2167   _Vcvv 2763   class class class wbr 4034   dom cdm 4664   Rel wrel 4669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-xp 4670  df-rel 4671  df-dm 4674
This theorem is referenced by:  releldmb  4904  releldmi  4906  funeu  5284  fnbr  5363  relelfvdm  5593  funbrfv2b  5608  funfvbrb  5678  ercl  6612  dvidlemap  15011  dvidrelem  15012  dvidsslem  15013  dvmulxxbr  15022  dviaddf  15025  dvimulf  15026  dvcoapbr  15027
  Copyright terms: Public domain W3C validator