ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  releldm Unicode version

Theorem releldm 4959
Description: The first argument of a binary relation belongs to its domain. (Contributed by NM, 2-Jul-2008.)
Assertion
Ref Expression
releldm  |-  ( ( Rel  R  /\  A R B )  ->  A  e.  dom  R )

Proof of Theorem releldm
StepHypRef Expression
1 brrelex 4759 . 2  |-  ( ( Rel  R  /\  A R B )  ->  A  e.  _V )
2 brrelex2 4760 . 2  |-  ( ( Rel  R  /\  A R B )  ->  B  e.  _V )
3 simpr 110 . 2  |-  ( ( Rel  R  /\  A R B )  ->  A R B )
4 breldmg 4929 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  A R B )  ->  A  e.  dom  R )
51, 2, 3, 4syl3anc 1271 1  |-  ( ( Rel  R  /\  A R B )  ->  A  e.  dom  R )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2200   _Vcvv 2799   class class class wbr 4083   dom cdm 4719   Rel wrel 4724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-rel 4726  df-dm 4729
This theorem is referenced by:  releldmb  4961  releldmi  4963  funeu  5343  fnbr  5425  relelfvdm  5659  funbrfv2b  5678  funfvbrb  5748  ercl  6691  dvidlemap  15365  dvidrelem  15366  dvidsslem  15367  dvmulxxbr  15376  dviaddf  15379  dvimulf  15380  dvcoapbr  15381
  Copyright terms: Public domain W3C validator