ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  orddisj Unicode version

Theorem orddisj 4523
Description: An ordinal class and its singleton are disjoint. (Contributed by NM, 19-May-1998.)
Assertion
Ref Expression
orddisj  |-  ( Ord 
A  ->  ( A  i^i  { A } )  =  (/) )

Proof of Theorem orddisj
StepHypRef Expression
1 ordirr 4519 . 2  |-  ( Ord 
A  ->  -.  A  e.  A )
2 disjsn 3638 . 2  |-  ( ( A  i^i  { A } )  =  (/)  <->  -.  A  e.  A )
31, 2sylibr 133 1  |-  ( Ord 
A  ->  ( A  i^i  { A } )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1343    e. wcel 2136    i^i cin 3115   (/)c0 3409   {csn 3576   Ord word 4340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-v 2728  df-dif 3118  df-in 3122  df-nul 3410  df-sn 3582
This theorem is referenced by:  orddif  4524  phplem2  6819  ennnfonelemhf1o  12346
  Copyright terms: Public domain W3C validator