ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  orddisj Unicode version

Theorem orddisj 4530
Description: An ordinal class and its singleton are disjoint. (Contributed by NM, 19-May-1998.)
Assertion
Ref Expression
orddisj  |-  ( Ord 
A  ->  ( A  i^i  { A } )  =  (/) )

Proof of Theorem orddisj
StepHypRef Expression
1 ordirr 4526 . 2  |-  ( Ord 
A  ->  -.  A  e.  A )
2 disjsn 3645 . 2  |-  ( ( A  i^i  { A } )  =  (/)  <->  -.  A  e.  A )
31, 2sylibr 133 1  |-  ( Ord 
A  ->  ( A  i^i  { A } )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1348    e. wcel 2141    i^i cin 3120   (/)c0 3414   {csn 3583   Ord word 4347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-v 2732  df-dif 3123  df-in 3127  df-nul 3415  df-sn 3589
This theorem is referenced by:  orddif  4531  phplem2  6831  ennnfonelemhf1o  12368
  Copyright terms: Public domain W3C validator