| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordirr | Unicode version | ||
| Description: Epsilon irreflexivity of ordinals: no ordinal class is a member of itself. Theorem 2.2(i) of [BellMachover] p. 469, generalized to classes. The present proof requires ax-setind 4629. If in the definition of ordinals df-iord 4457, we also required that membership be well-founded on any ordinal (see df-frind 4423), then we could prove ordirr 4634 without ax-setind 4629. (Contributed by NM, 2-Jan-1994.) |
| Ref | Expression |
|---|---|
| ordirr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elirr 4633 |
. 2
| |
| 2 | 1 | a1i 9 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-v 2801 df-dif 3199 df-sn 3672 |
| This theorem is referenced by: onirri 4635 nordeq 4636 ordn2lp 4637 orddisj 4638 onprc 4644 nlimsucg 4658 tfr1onlemsucfn 6486 tfr1onlemsucaccv 6487 tfrcllemsucfn 6499 tfrcllemsucaccv 6500 nntr2 6649 1ndom2 7026 unsnfi 7081 nnnninfeq 7295 nninfisol 7300 addnidpig 7523 frecfzennn 10648 hashinfom 11000 hashennn 11002 hashp1i 11032 ennnfonelemg 12974 ctinfom 12999 |
| Copyright terms: Public domain | W3C validator |