| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordirr | Unicode version | ||
| Description: Epsilon irreflexivity of ordinals: no ordinal class is a member of itself. Theorem 2.2(i) of [BellMachover] p. 469, generalized to classes. The present proof requires ax-setind 4585. If in the definition of ordinals df-iord 4413, we also required that membership be well-founded on any ordinal (see df-frind 4379), then we could prove ordirr 4590 without ax-setind 4585. (Contributed by NM, 2-Jan-1994.) |
| Ref | Expression |
|---|---|
| ordirr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elirr 4589 |
. 2
| |
| 2 | 1 | a1i 9 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-setind 4585 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-v 2774 df-dif 3168 df-sn 3639 |
| This theorem is referenced by: onirri 4591 nordeq 4592 ordn2lp 4593 orddisj 4594 onprc 4600 nlimsucg 4614 tfr1onlemsucfn 6426 tfr1onlemsucaccv 6427 tfrcllemsucfn 6439 tfrcllemsucaccv 6440 nntr2 6589 unsnfi 7016 nnnninfeq 7230 nninfisol 7235 addnidpig 7449 frecfzennn 10571 hashinfom 10923 hashennn 10925 hashp1i 10955 ennnfonelemg 12774 ctinfom 12799 |
| Copyright terms: Public domain | W3C validator |