| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordirr | Unicode version | ||
| Description: Epsilon irreflexivity of ordinals: no ordinal class is a member of itself. Theorem 2.2(i) of [BellMachover] p. 469, generalized to classes. The present proof requires ax-setind 4603. If in the definition of ordinals df-iord 4431, we also required that membership be well-founded on any ordinal (see df-frind 4397), then we could prove ordirr 4608 without ax-setind 4603. (Contributed by NM, 2-Jan-1994.) |
| Ref | Expression |
|---|---|
| ordirr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elirr 4607 |
. 2
| |
| 2 | 1 | a1i 9 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-setind 4603 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-v 2778 df-dif 3176 df-sn 3649 |
| This theorem is referenced by: onirri 4609 nordeq 4610 ordn2lp 4611 orddisj 4612 onprc 4618 nlimsucg 4632 tfr1onlemsucfn 6449 tfr1onlemsucaccv 6450 tfrcllemsucfn 6462 tfrcllemsucaccv 6463 nntr2 6612 1ndom2 6987 unsnfi 7042 nnnninfeq 7256 nninfisol 7261 addnidpig 7484 frecfzennn 10608 hashinfom 10960 hashennn 10962 hashp1i 10992 ennnfonelemg 12889 ctinfom 12914 |
| Copyright terms: Public domain | W3C validator |