| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ordirr | Unicode version | ||
| Description: Epsilon irreflexivity of ordinals: no ordinal class is a member of itself. Theorem 2.2(i) of [BellMachover] p. 469, generalized to classes. The present proof requires ax-setind 4573. If in the definition of ordinals df-iord 4401, we also required that membership be well-founded on any ordinal (see df-frind 4367), then we could prove ordirr 4578 without ax-setind 4573. (Contributed by NM, 2-Jan-1994.) | 
| Ref | Expression | 
|---|---|
| ordirr | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elirr 4577 | 
. 2
 | |
| 2 | 1 | a1i 9 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-setind 4573 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-v 2765 df-dif 3159 df-sn 3628 | 
| This theorem is referenced by: onirri 4579 nordeq 4580 ordn2lp 4581 orddisj 4582 onprc 4588 nlimsucg 4602 tfr1onlemsucfn 6398 tfr1onlemsucaccv 6399 tfrcllemsucfn 6411 tfrcllemsucaccv 6412 nntr2 6561 unsnfi 6980 nnnninfeq 7194 nninfisol 7199 addnidpig 7403 frecfzennn 10518 hashinfom 10870 hashennn 10872 hashp1i 10902 ennnfonelemg 12620 ctinfom 12645 | 
| Copyright terms: Public domain | W3C validator |