Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ordirr | Unicode version |
Description: Epsilon irreflexivity of ordinals: no ordinal class is a member of itself. Theorem 2.2(i) of [BellMachover] p. 469, generalized to classes. The present proof requires ax-setind 4521. If in the definition of ordinals df-iord 4351, we also required that membership be well-founded on any ordinal (see df-frind 4317), then we could prove ordirr 4526 without ax-setind 4521. (Contributed by NM, 2-Jan-1994.) |
Ref | Expression |
---|---|
ordirr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elirr 4525 | . 2 | |
2 | 1 | a1i 9 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wcel 2141 word 4347 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-v 2732 df-dif 3123 df-sn 3589 |
This theorem is referenced by: onirri 4527 nordeq 4528 ordn2lp 4529 orddisj 4530 onprc 4536 nlimsucg 4550 tfr1onlemsucfn 6319 tfr1onlemsucaccv 6320 tfrcllemsucfn 6332 tfrcllemsucaccv 6333 nntr2 6482 unsnfi 6896 nnnninfeq 7104 nninfisol 7109 addnidpig 7298 frecfzennn 10382 hashinfom 10712 hashennn 10714 hashp1i 10745 ennnfonelemg 12358 ctinfom 12383 |
Copyright terms: Public domain | W3C validator |