![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ordirr | Unicode version |
Description: Epsilon irreflexivity of ordinals: no ordinal class is a member of itself. Theorem 2.2(i) of [BellMachover] p. 469, generalized to classes. The present proof requires ax-setind 4570. If in the definition of ordinals df-iord 4398, we also required that membership be well-founded on any ordinal (see df-frind 4364), then we could prove ordirr 4575 without ax-setind 4570. (Contributed by NM, 2-Jan-1994.) |
Ref | Expression |
---|---|
ordirr |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elirr 4574 |
. 2
![]() ![]() ![]() ![]() ![]() | |
2 | 1 | a1i 9 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-setind 4570 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-v 2762 df-dif 3156 df-sn 3625 |
This theorem is referenced by: onirri 4576 nordeq 4577 ordn2lp 4578 orddisj 4579 onprc 4585 nlimsucg 4599 tfr1onlemsucfn 6395 tfr1onlemsucaccv 6396 tfrcllemsucfn 6408 tfrcllemsucaccv 6409 nntr2 6558 unsnfi 6977 nnnninfeq 7189 nninfisol 7194 addnidpig 7398 frecfzennn 10500 hashinfom 10852 hashennn 10854 hashp1i 10884 ennnfonelemg 12563 ctinfom 12588 |
Copyright terms: Public domain | W3C validator |