Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ordirr | Unicode version |
Description: Epsilon irreflexivity of ordinals: no ordinal class is a member of itself. Theorem 2.2(i) of [BellMachover] p. 469, generalized to classes. The present proof requires ax-setind 4494. If in the definition of ordinals df-iord 4325, we also required that membership be well-founded on any ordinal (see df-frind 4291), then we could prove ordirr 4499 without ax-setind 4494. (Contributed by NM, 2-Jan-1994.) |
Ref | Expression |
---|---|
ordirr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elirr 4498 | . 2 | |
2 | 1 | a1i 9 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wcel 2128 word 4321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 ax-setind 4494 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-v 2714 df-dif 3104 df-sn 3566 |
This theorem is referenced by: onirri 4500 nordeq 4501 ordn2lp 4502 orddisj 4503 onprc 4509 nlimsucg 4523 tfr1onlemsucfn 6281 tfr1onlemsucaccv 6282 tfrcllemsucfn 6294 tfrcllemsucaccv 6295 nntr2 6443 unsnfi 6856 addnidpig 7239 frecfzennn 10307 hashinfom 10634 hashennn 10636 hashp1i 10666 ennnfonelemg 12104 ctinfom 12129 nninfalllemn 13541 |
Copyright terms: Public domain | W3C validator |