| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordirr | Unicode version | ||
| Description: Epsilon irreflexivity of ordinals: no ordinal class is a member of itself. Theorem 2.2(i) of [BellMachover] p. 469, generalized to classes. The present proof requires ax-setind 4586. If in the definition of ordinals df-iord 4414, we also required that membership be well-founded on any ordinal (see df-frind 4380), then we could prove ordirr 4591 without ax-setind 4586. (Contributed by NM, 2-Jan-1994.) |
| Ref | Expression |
|---|---|
| ordirr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elirr 4590 |
. 2
| |
| 2 | 1 | a1i 9 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-setind 4586 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-v 2774 df-dif 3168 df-sn 3639 |
| This theorem is referenced by: onirri 4592 nordeq 4593 ordn2lp 4594 orddisj 4595 onprc 4601 nlimsucg 4615 tfr1onlemsucfn 6428 tfr1onlemsucaccv 6429 tfrcllemsucfn 6441 tfrcllemsucaccv 6442 nntr2 6591 unsnfi 7018 nnnninfeq 7232 nninfisol 7237 addnidpig 7451 frecfzennn 10573 hashinfom 10925 hashennn 10927 hashp1i 10957 ennnfonelemg 12807 ctinfom 12832 |
| Copyright terms: Public domain | W3C validator |