![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ordirr | Unicode version |
Description: Epsilon irreflexivity of ordinals: no ordinal class is a member of itself. Theorem 2.2(i) of [BellMachover] p. 469, generalized to classes. The present proof requires ax-setind 4567. If in the definition of ordinals df-iord 4395, we also required that membership be well-founded on any ordinal (see df-frind 4361), then we could prove ordirr 4572 without ax-setind 4567. (Contributed by NM, 2-Jan-1994.) |
Ref | Expression |
---|---|
ordirr |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elirr 4571 |
. 2
![]() ![]() ![]() ![]() ![]() | |
2 | 1 | a1i 9 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-setind 4567 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-v 2762 df-dif 3155 df-sn 3624 |
This theorem is referenced by: onirri 4573 nordeq 4574 ordn2lp 4575 orddisj 4576 onprc 4582 nlimsucg 4596 tfr1onlemsucfn 6388 tfr1onlemsucaccv 6389 tfrcllemsucfn 6401 tfrcllemsucaccv 6402 nntr2 6551 unsnfi 6970 nnnninfeq 7181 nninfisol 7186 addnidpig 7390 frecfzennn 10491 hashinfom 10843 hashennn 10845 hashp1i 10875 ennnfonelemg 12554 ctinfom 12579 |
Copyright terms: Public domain | W3C validator |