ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  phplem2 Unicode version

Theorem phplem2 6975
Description: Lemma for Pigeonhole Principle. A natural number is equinumerous to its successor minus one of its elements. (Contributed by NM, 11-Jun-1998.) (Revised by Mario Carneiro, 16-Nov-2014.)
Hypotheses
Ref Expression
phplem2.1  |-  A  e. 
_V
phplem2.2  |-  B  e. 
_V
Assertion
Ref Expression
phplem2  |-  ( ( A  e.  om  /\  B  e.  A )  ->  A  ~~  ( suc 
A  \  { B } ) )

Proof of Theorem phplem2
StepHypRef Expression
1 phplem2.2 . . . . . . . 8  |-  B  e. 
_V
2 phplem2.1 . . . . . . . 8  |-  A  e. 
_V
31, 2opex 4291 . . . . . . 7  |-  <. B ,  A >.  e.  _V
43snex 4245 . . . . . 6  |-  { <. B ,  A >. }  e.  _V
51, 2f1osn 5585 . . . . . 6  |-  { <. B ,  A >. } : { B } -1-1-onto-> { A }
6 f1oen3g 6868 . . . . . 6  |-  ( ( { <. B ,  A >. }  e.  _V  /\  {
<. B ,  A >. } : { B } -1-1-onto-> { A } )  ->  { B }  ~~  { A }
)
74, 5, 6mp2an 426 . . . . 5  |-  { B }  ~~  { A }
8 difss 3307 . . . . . . 7  |-  ( A 
\  { B }
)  C_  A
92, 8ssexi 4198 . . . . . 6  |-  ( A 
\  { B }
)  e.  _V
109enref 6879 . . . . 5  |-  ( A 
\  { B }
)  ~~  ( A  \  { B } )
117, 10pm3.2i 272 . . . 4  |-  ( { B }  ~~  { A }  /\  ( A  \  { B }
)  ~~  ( A  \  { B } ) )
12 incom 3373 . . . . . 6  |-  ( { A }  i^i  ( A  \  { B }
) )  =  ( ( A  \  { B } )  i^i  { A } )
13 ssrin 3406 . . . . . . . . 9  |-  ( ( A  \  { B } )  C_  A  ->  ( ( A  \  { B } )  i^i 
{ A } ) 
C_  ( A  i^i  { A } ) )
148, 13ax-mp 5 . . . . . . . 8  |-  ( ( A  \  { B } )  i^i  { A } )  C_  ( A  i^i  { A }
)
15 nnord 4678 . . . . . . . . 9  |-  ( A  e.  om  ->  Ord  A )
16 orddisj 4612 . . . . . . . . 9  |-  ( Ord 
A  ->  ( A  i^i  { A } )  =  (/) )
1715, 16syl 14 . . . . . . . 8  |-  ( A  e.  om  ->  ( A  i^i  { A }
)  =  (/) )
1814, 17sseqtrid 3251 . . . . . . 7  |-  ( A  e.  om  ->  (
( A  \  { B } )  i^i  { A } )  C_  (/) )
19 ss0 3509 . . . . . . 7  |-  ( ( ( A  \  { B } )  i^i  { A } )  C_  (/)  ->  (
( A  \  { B } )  i^i  { A } )  =  (/) )
2018, 19syl 14 . . . . . 6  |-  ( A  e.  om  ->  (
( A  \  { B } )  i^i  { A } )  =  (/) )
2112, 20eqtrid 2252 . . . . 5  |-  ( A  e.  om  ->  ( { A }  i^i  ( A  \  { B }
) )  =  (/) )
22 disjdif 3541 . . . . 5  |-  ( { B }  i^i  ( A  \  { B }
) )  =  (/)
2321, 22jctil 312 . . . 4  |-  ( A  e.  om  ->  (
( { B }  i^i  ( A  \  { B } ) )  =  (/)  /\  ( { A }  i^i  ( A  \  { B } ) )  =  (/) ) )
24 unen 6932 . . . 4  |-  ( ( ( { B }  ~~  { A }  /\  ( A  \  { B } )  ~~  ( A  \  { B }
) )  /\  (
( { B }  i^i  ( A  \  { B } ) )  =  (/)  /\  ( { A }  i^i  ( A  \  { B } ) )  =  (/) ) )  -> 
( { B }  u.  ( A  \  { B } ) )  ~~  ( { A }  u.  ( A  \  { B } ) ) )
2511, 23, 24sylancr 414 . . 3  |-  ( A  e.  om  ->  ( { B }  u.  ( A  \  { B }
) )  ~~  ( { A }  u.  ( A  \  { B }
) ) )
2625adantr 276 . 2  |-  ( ( A  e.  om  /\  B  e.  A )  ->  ( { B }  u.  ( A  \  { B } ) )  ~~  ( { A }  u.  ( A  \  { B } ) ) )
27 uncom 3325 . . 3  |-  ( { B }  u.  ( A  \  { B }
) )  =  ( ( A  \  { B } )  u.  { B } )
28 nndifsnid 6616 . . 3  |-  ( ( A  e.  om  /\  B  e.  A )  ->  ( ( A  \  { B } )  u. 
{ B } )  =  A )
2927, 28eqtrid 2252 . 2  |-  ( ( A  e.  om  /\  B  e.  A )  ->  ( { B }  u.  ( A  \  { B } ) )  =  A )
30 phplem1 6974 . 2  |-  ( ( A  e.  om  /\  B  e.  A )  ->  ( { A }  u.  ( A  \  { B } ) )  =  ( suc  A  \  { B } ) )
3126, 29, 303brtr3d 4090 1  |-  ( ( A  e.  om  /\  B  e.  A )  ->  A  ~~  ( suc 
A  \  { B } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   _Vcvv 2776    \ cdif 3171    u. cun 3172    i^i cin 3173    C_ wss 3174   (/)c0 3468   {csn 3643   <.cop 3646   class class class wbr 4059   Ord word 4427   suc csuc 4430   omcom 4656   -1-1-onto->wf1o 5289    ~~ cen 6848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-en 6851
This theorem is referenced by:  phplem3  6976
  Copyright terms: Public domain W3C validator