| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > phplem2 | Unicode version | ||
| Description: Lemma for Pigeonhole Principle. A natural number is equinumerous to its successor minus one of its elements. (Contributed by NM, 11-Jun-1998.) (Revised by Mario Carneiro, 16-Nov-2014.) |
| Ref | Expression |
|---|---|
| phplem2.1 |
|
| phplem2.2 |
|
| Ref | Expression |
|---|---|
| phplem2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phplem2.2 |
. . . . . . . 8
| |
| 2 | phplem2.1 |
. . . . . . . 8
| |
| 3 | 1, 2 | opex 4272 |
. . . . . . 7
|
| 4 | 3 | snex 4228 |
. . . . . 6
|
| 5 | 1, 2 | f1osn 5561 |
. . . . . 6
|
| 6 | f1oen3g 6844 |
. . . . . 6
| |
| 7 | 4, 5, 6 | mp2an 426 |
. . . . 5
|
| 8 | difss 3298 |
. . . . . . 7
| |
| 9 | 2, 8 | ssexi 4181 |
. . . . . 6
|
| 10 | 9 | enref 6855 |
. . . . 5
|
| 11 | 7, 10 | pm3.2i 272 |
. . . 4
|
| 12 | incom 3364 |
. . . . . 6
| |
| 13 | ssrin 3397 |
. . . . . . . . 9
| |
| 14 | 8, 13 | ax-mp 5 |
. . . . . . . 8
|
| 15 | nnord 4659 |
. . . . . . . . 9
| |
| 16 | orddisj 4593 |
. . . . . . . . 9
| |
| 17 | 15, 16 | syl 14 |
. . . . . . . 8
|
| 18 | 14, 17 | sseqtrid 3242 |
. . . . . . 7
|
| 19 | ss0 3500 |
. . . . . . 7
| |
| 20 | 18, 19 | syl 14 |
. . . . . 6
|
| 21 | 12, 20 | eqtrid 2249 |
. . . . 5
|
| 22 | disjdif 3532 |
. . . . 5
| |
| 23 | 21, 22 | jctil 312 |
. . . 4
|
| 24 | unen 6907 |
. . . 4
| |
| 25 | 11, 23, 24 | sylancr 414 |
. . 3
|
| 26 | 25 | adantr 276 |
. 2
|
| 27 | uncom 3316 |
. . 3
| |
| 28 | nndifsnid 6592 |
. . 3
| |
| 29 | 27, 28 | eqtrid 2249 |
. 2
|
| 30 | phplem1 6948 |
. 2
| |
| 31 | 26, 29, 30 | 3brtr3d 4074 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-tr 4142 df-id 4339 df-iord 4412 df-on 4414 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-en 6827 |
| This theorem is referenced by: phplem3 6950 |
| Copyright terms: Public domain | W3C validator |