ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  phplem2 Unicode version

Theorem phplem2 6549
Description: Lemma for Pigeonhole Principle. A natural number is equinumerous to its successor minus one of its elements. (Contributed by NM, 11-Jun-1998.) (Revised by Mario Carneiro, 16-Nov-2014.)
Hypotheses
Ref Expression
phplem2.1  |-  A  e. 
_V
phplem2.2  |-  B  e. 
_V
Assertion
Ref Expression
phplem2  |-  ( ( A  e.  om  /\  B  e.  A )  ->  A  ~~  ( suc 
A  \  { B } ) )

Proof of Theorem phplem2
StepHypRef Expression
1 phplem2.2 . . . . . . . 8  |-  B  e. 
_V
2 phplem2.1 . . . . . . . 8  |-  A  e. 
_V
31, 2opex 4047 . . . . . . 7  |-  <. B ,  A >.  e.  _V
43snex 4011 . . . . . 6  |-  { <. B ,  A >. }  e.  _V
51, 2f1osn 5277 . . . . . 6  |-  { <. B ,  A >. } : { B } -1-1-onto-> { A }
6 f1oen3g 6451 . . . . . 6  |-  ( ( { <. B ,  A >. }  e.  _V  /\  {
<. B ,  A >. } : { B } -1-1-onto-> { A } )  ->  { B }  ~~  { A }
)
74, 5, 6mp2an 417 . . . . 5  |-  { B }  ~~  { A }
8 difss 3124 . . . . . . 7  |-  ( A 
\  { B }
)  C_  A
92, 8ssexi 3969 . . . . . 6  |-  ( A 
\  { B }
)  e.  _V
109enref 6462 . . . . 5  |-  ( A 
\  { B }
)  ~~  ( A  \  { B } )
117, 10pm3.2i 266 . . . 4  |-  ( { B }  ~~  { A }  /\  ( A  \  { B }
)  ~~  ( A  \  { B } ) )
12 incom 3190 . . . . . 6  |-  ( { A }  i^i  ( A  \  { B }
) )  =  ( ( A  \  { B } )  i^i  { A } )
13 ssrin 3223 . . . . . . . . 9  |-  ( ( A  \  { B } )  C_  A  ->  ( ( A  \  { B } )  i^i 
{ A } ) 
C_  ( A  i^i  { A } ) )
148, 13ax-mp 7 . . . . . . . 8  |-  ( ( A  \  { B } )  i^i  { A } )  C_  ( A  i^i  { A }
)
15 nnord 4416 . . . . . . . . 9  |-  ( A  e.  om  ->  Ord  A )
16 orddisj 4352 . . . . . . . . 9  |-  ( Ord 
A  ->  ( A  i^i  { A } )  =  (/) )
1715, 16syl 14 . . . . . . . 8  |-  ( A  e.  om  ->  ( A  i^i  { A }
)  =  (/) )
1814, 17syl5sseq 3072 . . . . . . 7  |-  ( A  e.  om  ->  (
( A  \  { B } )  i^i  { A } )  C_  (/) )
19 ss0 3320 . . . . . . 7  |-  ( ( ( A  \  { B } )  i^i  { A } )  C_  (/)  ->  (
( A  \  { B } )  i^i  { A } )  =  (/) )
2018, 19syl 14 . . . . . 6  |-  ( A  e.  om  ->  (
( A  \  { B } )  i^i  { A } )  =  (/) )
2112, 20syl5eq 2132 . . . . 5  |-  ( A  e.  om  ->  ( { A }  i^i  ( A  \  { B }
) )  =  (/) )
22 disjdif 3352 . . . . 5  |-  ( { B }  i^i  ( A  \  { B }
) )  =  (/)
2321, 22jctil 305 . . . 4  |-  ( A  e.  om  ->  (
( { B }  i^i  ( A  \  { B } ) )  =  (/)  /\  ( { A }  i^i  ( A  \  { B } ) )  =  (/) ) )
24 unen 6513 . . . 4  |-  ( ( ( { B }  ~~  { A }  /\  ( A  \  { B } )  ~~  ( A  \  { B }
) )  /\  (
( { B }  i^i  ( A  \  { B } ) )  =  (/)  /\  ( { A }  i^i  ( A  \  { B } ) )  =  (/) ) )  -> 
( { B }  u.  ( A  \  { B } ) )  ~~  ( { A }  u.  ( A  \  { B } ) ) )
2511, 23, 24sylancr 405 . . 3  |-  ( A  e.  om  ->  ( { B }  u.  ( A  \  { B }
) )  ~~  ( { A }  u.  ( A  \  { B }
) ) )
2625adantr 270 . 2  |-  ( ( A  e.  om  /\  B  e.  A )  ->  ( { B }  u.  ( A  \  { B } ) )  ~~  ( { A }  u.  ( A  \  { B } ) ) )
27 uncom 3142 . . 3  |-  ( { B }  u.  ( A  \  { B }
) )  =  ( ( A  \  { B } )  u.  { B } )
28 nndifsnid 6246 . . 3  |-  ( ( A  e.  om  /\  B  e.  A )  ->  ( ( A  \  { B } )  u. 
{ B } )  =  A )
2927, 28syl5eq 2132 . 2  |-  ( ( A  e.  om  /\  B  e.  A )  ->  ( { B }  u.  ( A  \  { B } ) )  =  A )
30 phplem1 6548 . 2  |-  ( ( A  e.  om  /\  B  e.  A )  ->  ( { A }  u.  ( A  \  { B } ) )  =  ( suc  A  \  { B } ) )
3126, 29, 303brtr3d 3866 1  |-  ( ( A  e.  om  /\  B  e.  A )  ->  A  ~~  ( suc 
A  \  { B } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1289    e. wcel 1438   _Vcvv 2619    \ cdif 2994    u. cun 2995    i^i cin 2996    C_ wss 2997   (/)c0 3284   {csn 3441   <.cop 3444   class class class wbr 3837   Ord word 4180   suc csuc 4183   omcom 4395   -1-1-onto->wf1o 5001    ~~ cen 6435
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-nul 3957  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-iinf 4393
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-rab 2368  df-v 2621  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-br 3838  df-opab 3892  df-tr 3929  df-id 4111  df-iord 4184  df-on 4186  df-suc 4189  df-iom 4396  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-en 6438
This theorem is referenced by:  phplem3  6550
  Copyright terms: Public domain W3C validator