ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  phplem2 Unicode version

Theorem phplem2 6747
Description: Lemma for Pigeonhole Principle. A natural number is equinumerous to its successor minus one of its elements. (Contributed by NM, 11-Jun-1998.) (Revised by Mario Carneiro, 16-Nov-2014.)
Hypotheses
Ref Expression
phplem2.1  |-  A  e. 
_V
phplem2.2  |-  B  e. 
_V
Assertion
Ref Expression
phplem2  |-  ( ( A  e.  om  /\  B  e.  A )  ->  A  ~~  ( suc 
A  \  { B } ) )

Proof of Theorem phplem2
StepHypRef Expression
1 phplem2.2 . . . . . . . 8  |-  B  e. 
_V
2 phplem2.1 . . . . . . . 8  |-  A  e. 
_V
31, 2opex 4151 . . . . . . 7  |-  <. B ,  A >.  e.  _V
43snex 4109 . . . . . 6  |-  { <. B ,  A >. }  e.  _V
51, 2f1osn 5407 . . . . . 6  |-  { <. B ,  A >. } : { B } -1-1-onto-> { A }
6 f1oen3g 6648 . . . . . 6  |-  ( ( { <. B ,  A >. }  e.  _V  /\  {
<. B ,  A >. } : { B } -1-1-onto-> { A } )  ->  { B }  ~~  { A }
)
74, 5, 6mp2an 422 . . . . 5  |-  { B }  ~~  { A }
8 difss 3202 . . . . . . 7  |-  ( A 
\  { B }
)  C_  A
92, 8ssexi 4066 . . . . . 6  |-  ( A 
\  { B }
)  e.  _V
109enref 6659 . . . . 5  |-  ( A 
\  { B }
)  ~~  ( A  \  { B } )
117, 10pm3.2i 270 . . . 4  |-  ( { B }  ~~  { A }  /\  ( A  \  { B }
)  ~~  ( A  \  { B } ) )
12 incom 3268 . . . . . 6  |-  ( { A }  i^i  ( A  \  { B }
) )  =  ( ( A  \  { B } )  i^i  { A } )
13 ssrin 3301 . . . . . . . . 9  |-  ( ( A  \  { B } )  C_  A  ->  ( ( A  \  { B } )  i^i 
{ A } ) 
C_  ( A  i^i  { A } ) )
148, 13ax-mp 5 . . . . . . . 8  |-  ( ( A  \  { B } )  i^i  { A } )  C_  ( A  i^i  { A }
)
15 nnord 4525 . . . . . . . . 9  |-  ( A  e.  om  ->  Ord  A )
16 orddisj 4461 . . . . . . . . 9  |-  ( Ord 
A  ->  ( A  i^i  { A } )  =  (/) )
1715, 16syl 14 . . . . . . . 8  |-  ( A  e.  om  ->  ( A  i^i  { A }
)  =  (/) )
1814, 17sseqtrid 3147 . . . . . . 7  |-  ( A  e.  om  ->  (
( A  \  { B } )  i^i  { A } )  C_  (/) )
19 ss0 3403 . . . . . . 7  |-  ( ( ( A  \  { B } )  i^i  { A } )  C_  (/)  ->  (
( A  \  { B } )  i^i  { A } )  =  (/) )
2018, 19syl 14 . . . . . 6  |-  ( A  e.  om  ->  (
( A  \  { B } )  i^i  { A } )  =  (/) )
2112, 20syl5eq 2184 . . . . 5  |-  ( A  e.  om  ->  ( { A }  i^i  ( A  \  { B }
) )  =  (/) )
22 disjdif 3435 . . . . 5  |-  ( { B }  i^i  ( A  \  { B }
) )  =  (/)
2321, 22jctil 310 . . . 4  |-  ( A  e.  om  ->  (
( { B }  i^i  ( A  \  { B } ) )  =  (/)  /\  ( { A }  i^i  ( A  \  { B } ) )  =  (/) ) )
24 unen 6710 . . . 4  |-  ( ( ( { B }  ~~  { A }  /\  ( A  \  { B } )  ~~  ( A  \  { B }
) )  /\  (
( { B }  i^i  ( A  \  { B } ) )  =  (/)  /\  ( { A }  i^i  ( A  \  { B } ) )  =  (/) ) )  -> 
( { B }  u.  ( A  \  { B } ) )  ~~  ( { A }  u.  ( A  \  { B } ) ) )
2511, 23, 24sylancr 410 . . 3  |-  ( A  e.  om  ->  ( { B }  u.  ( A  \  { B }
) )  ~~  ( { A }  u.  ( A  \  { B }
) ) )
2625adantr 274 . 2  |-  ( ( A  e.  om  /\  B  e.  A )  ->  ( { B }  u.  ( A  \  { B } ) )  ~~  ( { A }  u.  ( A  \  { B } ) ) )
27 uncom 3220 . . 3  |-  ( { B }  u.  ( A  \  { B }
) )  =  ( ( A  \  { B } )  u.  { B } )
28 nndifsnid 6403 . . 3  |-  ( ( A  e.  om  /\  B  e.  A )  ->  ( ( A  \  { B } )  u. 
{ B } )  =  A )
2927, 28syl5eq 2184 . 2  |-  ( ( A  e.  om  /\  B  e.  A )  ->  ( { B }  u.  ( A  \  { B } ) )  =  A )
30 phplem1 6746 . 2  |-  ( ( A  e.  om  /\  B  e.  A )  ->  ( { A }  u.  ( A  \  { B } ) )  =  ( suc  A  \  { B } ) )
3126, 29, 303brtr3d 3959 1  |-  ( ( A  e.  om  /\  B  e.  A )  ->  A  ~~  ( suc 
A  \  { B } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   _Vcvv 2686    \ cdif 3068    u. cun 3069    i^i cin 3070    C_ wss 3071   (/)c0 3363   {csn 3527   <.cop 3530   class class class wbr 3929   Ord word 4284   suc csuc 4287   omcom 4504   -1-1-onto->wf1o 5122    ~~ cen 6632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-en 6635
This theorem is referenced by:  phplem3  6748
  Copyright terms: Public domain W3C validator