| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > phplem2 | Unicode version | ||
| Description: Lemma for Pigeonhole Principle. A natural number is equinumerous to its successor minus one of its elements. (Contributed by NM, 11-Jun-1998.) (Revised by Mario Carneiro, 16-Nov-2014.) |
| Ref | Expression |
|---|---|
| phplem2.1 |
|
| phplem2.2 |
|
| Ref | Expression |
|---|---|
| phplem2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phplem2.2 |
. . . . . . . 8
| |
| 2 | phplem2.1 |
. . . . . . . 8
| |
| 3 | 1, 2 | opex 4314 |
. . . . . . 7
|
| 4 | 3 | snex 4268 |
. . . . . 6
|
| 5 | 1, 2 | f1osn 5612 |
. . . . . 6
|
| 6 | f1oen3g 6903 |
. . . . . 6
| |
| 7 | 4, 5, 6 | mp2an 426 |
. . . . 5
|
| 8 | difss 3330 |
. . . . . . 7
| |
| 9 | 2, 8 | ssexi 4221 |
. . . . . 6
|
| 10 | 9 | enref 6914 |
. . . . 5
|
| 11 | 7, 10 | pm3.2i 272 |
. . . 4
|
| 12 | incom 3396 |
. . . . . 6
| |
| 13 | ssrin 3429 |
. . . . . . . . 9
| |
| 14 | 8, 13 | ax-mp 5 |
. . . . . . . 8
|
| 15 | nnord 4703 |
. . . . . . . . 9
| |
| 16 | orddisj 4637 |
. . . . . . . . 9
| |
| 17 | 15, 16 | syl 14 |
. . . . . . . 8
|
| 18 | 14, 17 | sseqtrid 3274 |
. . . . . . 7
|
| 19 | ss0 3532 |
. . . . . . 7
| |
| 20 | 18, 19 | syl 14 |
. . . . . 6
|
| 21 | 12, 20 | eqtrid 2274 |
. . . . 5
|
| 22 | disjdif 3564 |
. . . . 5
| |
| 23 | 21, 22 | jctil 312 |
. . . 4
|
| 24 | unen 6967 |
. . . 4
| |
| 25 | 11, 23, 24 | sylancr 414 |
. . 3
|
| 26 | 25 | adantr 276 |
. 2
|
| 27 | uncom 3348 |
. . 3
| |
| 28 | nndifsnid 6651 |
. . 3
| |
| 29 | 27, 28 | eqtrid 2274 |
. 2
|
| 30 | phplem1 7009 |
. 2
| |
| 31 | 26, 29, 30 | 3brtr3d 4113 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-en 6886 |
| This theorem is referenced by: phplem3 7011 |
| Copyright terms: Public domain | W3C validator |