ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  orddif Unicode version

Theorem orddif 4583
Description: Ordinal derived from its successor. (Contributed by NM, 20-May-1998.)
Assertion
Ref Expression
orddif  |-  ( Ord 
A  ->  A  =  ( suc  A  \  { A } ) )

Proof of Theorem orddif
StepHypRef Expression
1 orddisj 4582 . 2  |-  ( Ord 
A  ->  ( A  i^i  { A } )  =  (/) )
2 disj3 3503 . . 3  |-  ( ( A  i^i  { A } )  =  (/)  <->  A  =  ( A  \  { A } ) )
3 df-suc 4406 . . . . . 6  |-  suc  A  =  ( A  u.  { A } )
43difeq1i 3277 . . . . 5  |-  ( suc 
A  \  { A } )  =  ( ( A  u.  { A } )  \  { A } )
5 difun2 3530 . . . . 5  |-  ( ( A  u.  { A } )  \  { A } )  =  ( A  \  { A } )
64, 5eqtri 2217 . . . 4  |-  ( suc 
A  \  { A } )  =  ( A  \  { A } )
76eqeq2i 2207 . . 3  |-  ( A  =  ( suc  A  \  { A } )  <-> 
A  =  ( A 
\  { A }
) )
82, 7bitr4i 187 . 2  |-  ( ( A  i^i  { A } )  =  (/)  <->  A  =  ( suc  A  \  { A } ) )
91, 8sylib 122 1  |-  ( Ord 
A  ->  A  =  ( suc  A  \  { A } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    \ cdif 3154    u. cun 3155    i^i cin 3156   (/)c0 3450   {csn 3622   Ord word 4397   suc csuc 4400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-sn 3628  df-suc 4406
This theorem is referenced by:  phplem3  6915  phplem4  6916  phplem4dom  6923  phplem4on  6928  dif1en  6940
  Copyright terms: Public domain W3C validator