ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  orddif Unicode version

Theorem orddif 4595
Description: Ordinal derived from its successor. (Contributed by NM, 20-May-1998.)
Assertion
Ref Expression
orddif  |-  ( Ord 
A  ->  A  =  ( suc  A  \  { A } ) )

Proof of Theorem orddif
StepHypRef Expression
1 orddisj 4594 . 2  |-  ( Ord 
A  ->  ( A  i^i  { A } )  =  (/) )
2 disj3 3513 . . 3  |-  ( ( A  i^i  { A } )  =  (/)  <->  A  =  ( A  \  { A } ) )
3 df-suc 4418 . . . . . 6  |-  suc  A  =  ( A  u.  { A } )
43difeq1i 3287 . . . . 5  |-  ( suc 
A  \  { A } )  =  ( ( A  u.  { A } )  \  { A } )
5 difun2 3540 . . . . 5  |-  ( ( A  u.  { A } )  \  { A } )  =  ( A  \  { A } )
64, 5eqtri 2226 . . . 4  |-  ( suc 
A  \  { A } )  =  ( A  \  { A } )
76eqeq2i 2216 . . 3  |-  ( A  =  ( suc  A  \  { A } )  <-> 
A  =  ( A 
\  { A }
) )
82, 7bitr4i 187 . 2  |-  ( ( A  i^i  { A } )  =  (/)  <->  A  =  ( suc  A  \  { A } ) )
91, 8sylib 122 1  |-  ( Ord 
A  ->  A  =  ( suc  A  \  { A } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    \ cdif 3163    u. cun 3164    i^i cin 3165   (/)c0 3460   {csn 3633   Ord word 4409   suc csuc 4412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-setind 4585
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rab 2493  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-sn 3639  df-suc 4418
This theorem is referenced by:  phplem3  6951  phplem4  6952  phplem4dom  6959  phplem4on  6964  dif1en  6976
  Copyright terms: Public domain W3C validator