ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  orddif Unicode version

Theorem orddif 4524
Description: Ordinal derived from its successor. (Contributed by NM, 20-May-1998.)
Assertion
Ref Expression
orddif  |-  ( Ord 
A  ->  A  =  ( suc  A  \  { A } ) )

Proof of Theorem orddif
StepHypRef Expression
1 orddisj 4523 . 2  |-  ( Ord 
A  ->  ( A  i^i  { A } )  =  (/) )
2 disj3 3461 . . 3  |-  ( ( A  i^i  { A } )  =  (/)  <->  A  =  ( A  \  { A } ) )
3 df-suc 4349 . . . . . 6  |-  suc  A  =  ( A  u.  { A } )
43difeq1i 3236 . . . . 5  |-  ( suc 
A  \  { A } )  =  ( ( A  u.  { A } )  \  { A } )
5 difun2 3488 . . . . 5  |-  ( ( A  u.  { A } )  \  { A } )  =  ( A  \  { A } )
64, 5eqtri 2186 . . . 4  |-  ( suc 
A  \  { A } )  =  ( A  \  { A } )
76eqeq2i 2176 . . 3  |-  ( A  =  ( suc  A  \  { A } )  <-> 
A  =  ( A 
\  { A }
) )
82, 7bitr4i 186 . 2  |-  ( ( A  i^i  { A } )  =  (/)  <->  A  =  ( suc  A  \  { A } ) )
91, 8sylib 121 1  |-  ( Ord 
A  ->  A  =  ( suc  A  \  { A } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    \ cdif 3113    u. cun 3114    i^i cin 3115   (/)c0 3409   {csn 3576   Ord word 4340   suc csuc 4343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-sn 3582  df-suc 4349
This theorem is referenced by:  phplem3  6820  phplem4  6821  phplem4dom  6828  phplem4on  6833  dif1en  6845
  Copyright terms: Public domain W3C validator