ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  orddisj GIF version

Theorem orddisj 4578
Description: An ordinal class and its singleton are disjoint. (Contributed by NM, 19-May-1998.)
Assertion
Ref Expression
orddisj (Ord 𝐴 → (𝐴 ∩ {𝐴}) = ∅)

Proof of Theorem orddisj
StepHypRef Expression
1 ordirr 4574 . 2 (Ord 𝐴 → ¬ 𝐴𝐴)
2 disjsn 3680 . 2 ((𝐴 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴𝐴)
31, 2sylibr 134 1 (Ord 𝐴 → (𝐴 ∩ {𝐴}) = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1364  wcel 2164  cin 3152  c0 3446  {csn 3618  Ord word 4393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-v 2762  df-dif 3155  df-in 3159  df-nul 3447  df-sn 3624
This theorem is referenced by:  orddif  4579  phplem2  6909  ennnfonelemhf1o  12570
  Copyright terms: Public domain W3C validator