ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  orddisj GIF version

Theorem orddisj 4637
Description: An ordinal class and its singleton are disjoint. (Contributed by NM, 19-May-1998.)
Assertion
Ref Expression
orddisj (Ord 𝐴 → (𝐴 ∩ {𝐴}) = ∅)

Proof of Theorem orddisj
StepHypRef Expression
1 ordirr 4633 . 2 (Ord 𝐴 → ¬ 𝐴𝐴)
2 disjsn 3728 . 2 ((𝐴 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴𝐴)
31, 2sylibr 134 1 (Ord 𝐴 → (𝐴 ∩ {𝐴}) = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1395  wcel 2200  cin 3196  c0 3491  {csn 3666  Ord word 4452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-v 2801  df-dif 3199  df-in 3203  df-nul 3492  df-sn 3672
This theorem is referenced by:  orddif  4638  phplem2  7010  ennnfonelemhf1o  12979
  Copyright terms: Public domain W3C validator