ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  orddisj GIF version

Theorem orddisj 4582
Description: An ordinal class and its singleton are disjoint. (Contributed by NM, 19-May-1998.)
Assertion
Ref Expression
orddisj (Ord 𝐴 → (𝐴 ∩ {𝐴}) = ∅)

Proof of Theorem orddisj
StepHypRef Expression
1 ordirr 4578 . 2 (Ord 𝐴 → ¬ 𝐴𝐴)
2 disjsn 3684 . 2 ((𝐴 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴𝐴)
31, 2sylibr 134 1 (Ord 𝐴 → (𝐴 ∩ {𝐴}) = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1364  wcel 2167  cin 3156  c0 3450  {csn 3622  Ord word 4397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-v 2765  df-dif 3159  df-in 3163  df-nul 3451  df-sn 3628
This theorem is referenced by:  orddif  4583  phplem2  6914  ennnfonelemhf1o  12630
  Copyright terms: Public domain W3C validator