Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > orddisj | GIF version |
Description: An ordinal class and its singleton are disjoint. (Contributed by NM, 19-May-1998.) |
Ref | Expression |
---|---|
orddisj | ⊢ (Ord 𝐴 → (𝐴 ∩ {𝐴}) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordirr 4526 | . 2 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) | |
2 | disjsn 3645 | . 2 ⊢ ((𝐴 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ 𝐴) | |
3 | 1, 2 | sylibr 133 | 1 ⊢ (Ord 𝐴 → (𝐴 ∩ {𝐴}) = ∅) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1348 ∈ wcel 2141 ∩ cin 3120 ∅c0 3414 {csn 3583 Ord word 4347 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-v 2732 df-dif 3123 df-in 3127 df-nul 3415 df-sn 3589 |
This theorem is referenced by: orddif 4531 phplem2 6831 ennnfonelemhf1o 12368 |
Copyright terms: Public domain | W3C validator |