ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordn2lp Unicode version

Theorem ordn2lp 4581
Description: An ordinal class cannot be an element of one of its members. Variant of first part of Theorem 2.2(vii) of [BellMachover] p. 469. (Contributed by NM, 3-Apr-1994.)
Assertion
Ref Expression
ordn2lp  |-  ( Ord 
A  ->  -.  ( A  e.  B  /\  B  e.  A )
)

Proof of Theorem ordn2lp
StepHypRef Expression
1 ordirr 4578 . 2  |-  ( Ord 
A  ->  -.  A  e.  A )
2 ordtr 4413 . . 3  |-  ( Ord 
A  ->  Tr  A
)
3 trel 4138 . . 3  |-  ( Tr  A  ->  ( ( A  e.  B  /\  B  e.  A )  ->  A  e.  A ) )
42, 3syl 14 . 2  |-  ( Ord 
A  ->  ( ( A  e.  B  /\  B  e.  A )  ->  A  e.  A ) )
51, 4mtod 664 1  |-  ( Ord 
A  ->  -.  ( A  e.  B  /\  B  e.  A )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    e. wcel 2167   Tr wtr 4131   Ord word 4397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-v 2765  df-dif 3159  df-in 3163  df-ss 3170  df-sn 3628  df-uni 3840  df-tr 4132  df-iord 4401
This theorem is referenced by:  nnnninfeq  7194
  Copyright terms: Public domain W3C validator