ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nordeq Unicode version

Theorem nordeq 4593
Description: A member of an ordinal class is not equal to it. (Contributed by NM, 25-May-1998.)
Assertion
Ref Expression
nordeq  |-  ( ( Ord  A  /\  B  e.  A )  ->  A  =/=  B )

Proof of Theorem nordeq
StepHypRef Expression
1 ordirr 4591 . . . 4  |-  ( Ord 
A  ->  -.  A  e.  A )
2 eleq1 2268 . . . . 5  |-  ( A  =  B  ->  ( A  e.  A  <->  B  e.  A ) )
32notbid 669 . . . 4  |-  ( A  =  B  ->  ( -.  A  e.  A  <->  -.  B  e.  A ) )
41, 3syl5ibcom 155 . . 3  |-  ( Ord 
A  ->  ( A  =  B  ->  -.  B  e.  A ) )
54necon2ad 2433 . 2  |-  ( Ord 
A  ->  ( B  e.  A  ->  A  =/= 
B ) )
65imp 124 1  |-  ( ( Ord  A  /\  B  e.  A )  ->  A  =/=  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176    =/= wne 2376   Ord word 4410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-setind 4586
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-v 2774  df-dif 3168  df-sn 3639
This theorem is referenced by:  phplem1  6951
  Copyright terms: Public domain W3C validator