ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nordeq Unicode version

Theorem nordeq 4545
Description: A member of an ordinal class is not equal to it. (Contributed by NM, 25-May-1998.)
Assertion
Ref Expression
nordeq  |-  ( ( Ord  A  /\  B  e.  A )  ->  A  =/=  B )

Proof of Theorem nordeq
StepHypRef Expression
1 ordirr 4543 . . . 4  |-  ( Ord 
A  ->  -.  A  e.  A )
2 eleq1 2240 . . . . 5  |-  ( A  =  B  ->  ( A  e.  A  <->  B  e.  A ) )
32notbid 667 . . . 4  |-  ( A  =  B  ->  ( -.  A  e.  A  <->  -.  B  e.  A ) )
41, 3syl5ibcom 155 . . 3  |-  ( Ord 
A  ->  ( A  =  B  ->  -.  B  e.  A ) )
54necon2ad 2404 . 2  |-  ( Ord 
A  ->  ( B  e.  A  ->  A  =/= 
B ) )
65imp 124 1  |-  ( ( Ord  A  /\  B  e.  A )  ->  A  =/=  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148    =/= wne 2347   Ord word 4364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-setind 4538
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-v 2741  df-dif 3133  df-sn 3600
This theorem is referenced by:  phplem1  6854
  Copyright terms: Public domain W3C validator