ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nordeq Unicode version

Theorem nordeq 4574
Description: A member of an ordinal class is not equal to it. (Contributed by NM, 25-May-1998.)
Assertion
Ref Expression
nordeq  |-  ( ( Ord  A  /\  B  e.  A )  ->  A  =/=  B )

Proof of Theorem nordeq
StepHypRef Expression
1 ordirr 4572 . . . 4  |-  ( Ord 
A  ->  -.  A  e.  A )
2 eleq1 2256 . . . . 5  |-  ( A  =  B  ->  ( A  e.  A  <->  B  e.  A ) )
32notbid 668 . . . 4  |-  ( A  =  B  ->  ( -.  A  e.  A  <->  -.  B  e.  A ) )
41, 3syl5ibcom 155 . . 3  |-  ( Ord 
A  ->  ( A  =  B  ->  -.  B  e.  A ) )
54necon2ad 2421 . 2  |-  ( Ord 
A  ->  ( B  e.  A  ->  A  =/= 
B ) )
65imp 124 1  |-  ( ( Ord  A  /\  B  e.  A )  ->  A  =/=  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164    =/= wne 2364   Ord word 4391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-setind 4567
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-v 2762  df-dif 3155  df-sn 3624
This theorem is referenced by:  phplem1  6903
  Copyright terms: Public domain W3C validator