ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oveq123i Unicode version

Theorem oveq123i 5856
Description: Equality inference for operation value. (Contributed by FL, 11-Jul-2010.)
Hypotheses
Ref Expression
oveq123i.1  |-  A  =  C
oveq123i.2  |-  B  =  D
oveq123i.3  |-  F  =  G
Assertion
Ref Expression
oveq123i  |-  ( A F B )  =  ( C G D )

Proof of Theorem oveq123i
StepHypRef Expression
1 oveq123i.1 . . 3  |-  A  =  C
2 oveq123i.2 . . 3  |-  B  =  D
31, 2oveq12i 5854 . 2  |-  ( A F B )  =  ( C F D )
4 oveq123i.3 . . 3  |-  F  =  G
54oveqi 5855 . 2  |-  ( C F D )  =  ( C G D )
63, 5eqtri 2186 1  |-  ( A F B )  =  ( C G D )
Colors of variables: wff set class
Syntax hints:    = wceq 1343  (class class class)co 5842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-iota 5153  df-fv 5196  df-ov 5845
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator