ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oveq123i Unicode version

Theorem oveq123i 5909
Description: Equality inference for operation value. (Contributed by FL, 11-Jul-2010.)
Hypotheses
Ref Expression
oveq123i.1  |-  A  =  C
oveq123i.2  |-  B  =  D
oveq123i.3  |-  F  =  G
Assertion
Ref Expression
oveq123i  |-  ( A F B )  =  ( C G D )

Proof of Theorem oveq123i
StepHypRef Expression
1 oveq123i.1 . . 3  |-  A  =  C
2 oveq123i.2 . . 3  |-  B  =  D
31, 2oveq12i 5907 . 2  |-  ( A F B )  =  ( C F D )
4 oveq123i.3 . . 3  |-  F  =  G
54oveqi 5908 . 2  |-  ( C F D )  =  ( C G D )
63, 5eqtri 2210 1  |-  ( A F B )  =  ( C G D )
Colors of variables: wff set class
Syntax hints:    = wceq 1364  (class class class)co 5895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-rex 2474  df-v 2754  df-un 3148  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-iota 5196  df-fv 5243  df-ov 5898
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator