ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oveq123i Unicode version

Theorem oveq123i 5889
Description: Equality inference for operation value. (Contributed by FL, 11-Jul-2010.)
Hypotheses
Ref Expression
oveq123i.1  |-  A  =  C
oveq123i.2  |-  B  =  D
oveq123i.3  |-  F  =  G
Assertion
Ref Expression
oveq123i  |-  ( A F B )  =  ( C G D )

Proof of Theorem oveq123i
StepHypRef Expression
1 oveq123i.1 . . 3  |-  A  =  C
2 oveq123i.2 . . 3  |-  B  =  D
31, 2oveq12i 5887 . 2  |-  ( A F B )  =  ( C F D )
4 oveq123i.3 . . 3  |-  F  =  G
54oveqi 5888 . 2  |-  ( C F D )  =  ( C G D )
63, 5eqtri 2198 1  |-  ( A F B )  =  ( C G D )
Colors of variables: wff set class
Syntax hints:    = wceq 1353  (class class class)co 5875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2740  df-un 3134  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-iota 5179  df-fv 5225  df-ov 5878
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator