ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oveqi Unicode version

Theorem oveqi 5980
Description: Equality inference for operation value. (Contributed by NM, 24-Nov-2007.)
Hypothesis
Ref Expression
oveq1i.1  |-  A  =  B
Assertion
Ref Expression
oveqi  |-  ( C A D )  =  ( C B D )

Proof of Theorem oveqi
StepHypRef Expression
1 oveq1i.1 . 2  |-  A  =  B
2 oveq 5973 . 2  |-  ( A  =  B  ->  ( C A D )  =  ( C B D ) )
31, 2ax-mp 5 1  |-  ( C A D )  =  ( C B D )
Colors of variables: wff set class
Syntax hints:    = wceq 1373  (class class class)co 5967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rex 2492  df-uni 3865  df-br 4060  df-iota 5251  df-fv 5298  df-ov 5970
This theorem is referenced by:  oveq123i  5981  fvmpopr2d  6105  iseqvalcbv  10641  imasplusg  13255  mndprop  13388  issubm  13419  grpprop  13465  ablprop  13748  ringprop  13917  blres  15021  cncfmet  15179
  Copyright terms: Public domain W3C validator