ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oveqi Unicode version

Theorem oveqi 6020
Description: Equality inference for operation value. (Contributed by NM, 24-Nov-2007.)
Hypothesis
Ref Expression
oveq1i.1  |-  A  =  B
Assertion
Ref Expression
oveqi  |-  ( C A D )  =  ( C B D )

Proof of Theorem oveqi
StepHypRef Expression
1 oveq1i.1 . 2  |-  A  =  B
2 oveq 6013 . 2  |-  ( A  =  B  ->  ( C A D )  =  ( C B D ) )
31, 2ax-mp 5 1  |-  ( C A D )  =  ( C B D )
Colors of variables: wff set class
Syntax hints:    = wceq 1395  (class class class)co 6007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-uni 3889  df-br 4084  df-iota 5278  df-fv 5326  df-ov 6010
This theorem is referenced by:  oveq123i  6021  fvmpopr2d  6147  iseqvalcbv  10689  imasplusg  13349  mndprop  13482  issubm  13513  grpprop  13559  ablprop  13842  ringprop  14011  blres  15116  cncfmet  15274
  Copyright terms: Public domain W3C validator