![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > oveq12i | Unicode version |
Description: Equality inference for operation value. (Contributed by NM, 28-Feb-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
oveq1i.1 |
![]() ![]() ![]() ![]() |
oveq12i.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
oveq12i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1i.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | oveq12i.2 |
. 2
![]() ![]() ![]() ![]() | |
3 | oveq12 5675 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | mp2an 418 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-rex 2366 df-v 2622 df-un 3004 df-sn 3456 df-pr 3457 df-op 3459 df-uni 3660 df-br 3852 df-iota 4993 df-fv 5036 df-ov 5669 |
This theorem is referenced by: oveq123i 5680 1lt2nq 7026 halfnqq 7030 caucvgprprlemnbj 7313 caucvgprprlemaddq 7328 m1p1sr 7367 m1m1sr 7368 axi2m1 7471 negdii 7827 3t3e9 8634 8th4div3 8696 halfpm6th 8697 numma 8981 decmul10add 9006 4t3lem 9034 9t11e99 9067 sqdivapi 10099 sq4e2t8 10113 i4 10118 binom2i 10124 facp1 10199 fac2 10200 fac3 10201 fac4 10202 4bc2eq6 10243 cji 10397 fsumadd 10861 fsumsplitf 10863 fsumsplitsnun 10874 0.999... 10976 ef01bndlem 11108 cos2bnd 11112 3dvds2dec 11205 flodddiv4 11273 nn0gcdsq 11517 ex-exp 11927 ex-fac 11928 ex-bc 11929 |
Copyright terms: Public domain | W3C validator |