Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > oveq12i | Unicode version |
Description: Equality inference for operation value. (Contributed by NM, 28-Feb-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
oveq1i.1 | |
oveq12i.2 |
Ref | Expression |
---|---|
oveq12i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1i.1 | . 2 | |
2 | oveq12i.2 | . 2 | |
3 | oveq12 5850 | . 2 | |
4 | 1, 2, 3 | mp2an 423 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1343 (class class class)co 5841 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-rex 2449 df-v 2727 df-un 3119 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-iota 5152 df-fv 5195 df-ov 5844 |
This theorem is referenced by: oveq123i 5855 1lt2nq 7343 halfnqq 7347 caucvgprprlemnbj 7630 caucvgprprlemaddq 7645 m1p1sr 7697 m1m1sr 7698 axi2m1 7812 negdii 8178 3t3e9 9010 8th4div3 9072 halfpm6th 9073 numma 9361 decmul10add 9386 4t3lem 9414 9t11e99 9447 halfthird 9460 5recm6rec 9461 fz0to3un2pr 10054 sqdivapi 10534 sq4e2t8 10548 i4 10553 binom2i 10559 facp1 10639 fac2 10640 fac3 10641 fac4 10642 4bc2eq6 10683 cji 10840 fsumadd 11343 fsumsplitf 11345 fsumsplitsnun 11356 0.999... 11458 fprodmul 11528 fprodsplitf 11569 ef01bndlem 11693 cos2bnd 11697 3dvds2dec 11799 flodddiv4 11867 nn0gcdsq 12128 pythagtriplem16 12207 cnmpt2res 12897 txmetcnp 13118 dveflem 13287 efhalfpi 13320 efipi 13322 sin2pi 13324 ef2pi 13326 sincosq3sgn 13349 sincosq4sgn 13350 sinq34lt0t 13352 sincos4thpi 13361 tan4thpi 13362 sincos6thpi 13363 sincos3rdpi 13364 pigt3 13365 lgsdi 13538 ex-exp 13568 ex-fac 13569 ex-bc 13570 |
Copyright terms: Public domain | W3C validator |