| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oveq12i | Unicode version | ||
| Description: Equality inference for operation value. (Contributed by NM, 28-Feb-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| oveq1i.1 |
|
| oveq12i.2 |
|
| Ref | Expression |
|---|---|
| oveq12i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1i.1 |
. 2
| |
| 2 | oveq12i.2 |
. 2
| |
| 3 | oveq12 6010 |
. 2
| |
| 4 | 1, 2, 3 | mp2an 426 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-iota 5278 df-fv 5326 df-ov 6004 |
| This theorem is referenced by: oveq123i 6015 1lt2nq 7593 halfnqq 7597 caucvgprprlemnbj 7880 caucvgprprlemaddq 7895 m1p1sr 7947 m1m1sr 7948 axi2m1 8062 negdii 8430 3t3e9 9268 8th4div3 9330 halfpm6th 9331 numma 9621 decmul10add 9646 4t3lem 9674 9t11e99 9707 halfthird 9720 5recm6rec 9721 fz0to3un2pr 10319 sqdivapi 10845 sq4e2t8 10859 i4 10864 binom2i 10870 facp1 10952 fac2 10953 fac3 10954 fac4 10955 4bc2eq6 10996 cji 11413 fsumadd 11917 fsumsplitf 11919 fsumsplitsnun 11930 0.999... 12032 fprodmul 12102 fprodsplitf 12143 ef01bndlem 12267 cos2bnd 12271 3dvds2dec 12377 flodddiv4 12447 nn0gcdsq 12722 pythagtriplem16 12802 4sqlem19 12932 dec5nprm 12937 dec2nprm 12938 numexp2x 12948 decsplit 12952 karatsuba 12953 2exp5 12955 2exp11 12959 2exp16 12960 ecqusaddd 13775 isrhm 14122 cnmpt2res 14971 txmetcnp 15192 dveflem 15400 efhalfpi 15473 efipi 15475 sin2pi 15477 ef2pi 15479 sincosq3sgn 15502 sincosq4sgn 15503 sinq34lt0t 15505 sincos4thpi 15514 tan4thpi 15515 sincos6thpi 15516 sincos3rdpi 15517 pigt3 15518 1sgm2ppw 15669 lgsdi 15716 lgsquadlem1 15756 2lgsoddprmlem3c 15788 2lgsoddprmlem3d 15789 ex-exp 16091 ex-fac 16092 ex-bc 16093 |
| Copyright terms: Public domain | W3C validator |