| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oveq12i | Unicode version | ||
| Description: Equality inference for operation value. (Contributed by NM, 28-Feb-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| oveq1i.1 |
|
| oveq12i.2 |
|
| Ref | Expression |
|---|---|
| oveq12i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1i.1 |
. 2
| |
| 2 | oveq12i.2 |
. 2
| |
| 3 | oveq12 5934 |
. 2
| |
| 4 | 1, 2, 3 | mp2an 426 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 |
| This theorem is referenced by: oveq123i 5939 1lt2nq 7490 halfnqq 7494 caucvgprprlemnbj 7777 caucvgprprlemaddq 7792 m1p1sr 7844 m1m1sr 7845 axi2m1 7959 negdii 8327 3t3e9 9165 8th4div3 9227 halfpm6th 9228 numma 9517 decmul10add 9542 4t3lem 9570 9t11e99 9603 halfthird 9616 5recm6rec 9617 fz0to3un2pr 10215 sqdivapi 10732 sq4e2t8 10746 i4 10751 binom2i 10757 facp1 10839 fac2 10840 fac3 10841 fac4 10842 4bc2eq6 10883 cji 11084 fsumadd 11588 fsumsplitf 11590 fsumsplitsnun 11601 0.999... 11703 fprodmul 11773 fprodsplitf 11814 ef01bndlem 11938 cos2bnd 11942 3dvds2dec 12048 flodddiv4 12118 nn0gcdsq 12393 pythagtriplem16 12473 4sqlem19 12603 dec5nprm 12608 dec2nprm 12609 numexp2x 12619 decsplit 12623 karatsuba 12624 2exp5 12626 2exp11 12630 2exp16 12631 ecqusaddd 13444 isrhm 13790 cnmpt2res 14617 txmetcnp 14838 dveflem 15046 efhalfpi 15119 efipi 15121 sin2pi 15123 ef2pi 15125 sincosq3sgn 15148 sincosq4sgn 15149 sinq34lt0t 15151 sincos4thpi 15160 tan4thpi 15161 sincos6thpi 15162 sincos3rdpi 15163 pigt3 15164 1sgm2ppw 15315 lgsdi 15362 lgsquadlem1 15402 2lgsoddprmlem3c 15434 2lgsoddprmlem3d 15435 ex-exp 15457 ex-fac 15458 ex-bc 15459 |
| Copyright terms: Public domain | W3C validator |