| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oveq12i | Unicode version | ||
| Description: Equality inference for operation value. (Contributed by NM, 28-Feb-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| oveq1i.1 |
|
| oveq12i.2 |
|
| Ref | Expression |
|---|---|
| oveq12i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1i.1 |
. 2
| |
| 2 | oveq12i.2 |
. 2
| |
| 3 | oveq12 5976 |
. 2
| |
| 4 | 1, 2, 3 | mp2an 426 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rex 2492 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-iota 5251 df-fv 5298 df-ov 5970 |
| This theorem is referenced by: oveq123i 5981 1lt2nq 7554 halfnqq 7558 caucvgprprlemnbj 7841 caucvgprprlemaddq 7856 m1p1sr 7908 m1m1sr 7909 axi2m1 8023 negdii 8391 3t3e9 9229 8th4div3 9291 halfpm6th 9292 numma 9582 decmul10add 9607 4t3lem 9635 9t11e99 9668 halfthird 9681 5recm6rec 9682 fz0to3un2pr 10280 sqdivapi 10805 sq4e2t8 10819 i4 10824 binom2i 10830 facp1 10912 fac2 10913 fac3 10914 fac4 10915 4bc2eq6 10956 cji 11328 fsumadd 11832 fsumsplitf 11834 fsumsplitsnun 11845 0.999... 11947 fprodmul 12017 fprodsplitf 12058 ef01bndlem 12182 cos2bnd 12186 3dvds2dec 12292 flodddiv4 12362 nn0gcdsq 12637 pythagtriplem16 12717 4sqlem19 12847 dec5nprm 12852 dec2nprm 12853 numexp2x 12863 decsplit 12867 karatsuba 12868 2exp5 12870 2exp11 12874 2exp16 12875 ecqusaddd 13689 isrhm 14035 cnmpt2res 14884 txmetcnp 15105 dveflem 15313 efhalfpi 15386 efipi 15388 sin2pi 15390 ef2pi 15392 sincosq3sgn 15415 sincosq4sgn 15416 sinq34lt0t 15418 sincos4thpi 15427 tan4thpi 15428 sincos6thpi 15429 sincos3rdpi 15430 pigt3 15431 1sgm2ppw 15582 lgsdi 15629 lgsquadlem1 15669 2lgsoddprmlem3c 15701 2lgsoddprmlem3d 15702 ex-exp 15863 ex-fac 15864 ex-bc 15865 |
| Copyright terms: Public domain | W3C validator |