ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oveq12i Unicode version

Theorem oveq12i 5678
Description: Equality inference for operation value. (Contributed by NM, 28-Feb-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Hypotheses
Ref Expression
oveq1i.1  |-  A  =  B
oveq12i.2  |-  C  =  D
Assertion
Ref Expression
oveq12i  |-  ( A F C )  =  ( B F D )

Proof of Theorem oveq12i
StepHypRef Expression
1 oveq1i.1 . 2  |-  A  =  B
2 oveq12i.2 . 2  |-  C  =  D
3 oveq12 5675 . 2  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A F C )  =  ( B F D ) )
41, 2, 3mp2an 418 1  |-  ( A F C )  =  ( B F D )
Colors of variables: wff set class
Syntax hints:    = wceq 1290  (class class class)co 5666
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-rex 2366  df-v 2622  df-un 3004  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-br 3852  df-iota 4993  df-fv 5036  df-ov 5669
This theorem is referenced by:  oveq123i  5680  1lt2nq  7026  halfnqq  7030  caucvgprprlemnbj  7313  caucvgprprlemaddq  7328  m1p1sr  7367  m1m1sr  7368  axi2m1  7471  negdii  7827  3t3e9  8634  8th4div3  8696  halfpm6th  8697  numma  8981  decmul10add  9006  4t3lem  9034  9t11e99  9067  sqdivapi  10099  sq4e2t8  10113  i4  10118  binom2i  10124  facp1  10199  fac2  10200  fac3  10201  fac4  10202  4bc2eq6  10243  cji  10397  fsumadd  10861  fsumsplitf  10863  fsumsplitsnun  10874  0.999...  10976  ef01bndlem  11108  cos2bnd  11112  3dvds2dec  11205  flodddiv4  11273  nn0gcdsq  11517  ex-exp  11927  ex-fac  11928  ex-bc  11929
  Copyright terms: Public domain W3C validator