| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oveq12i | Unicode version | ||
| Description: Equality inference for operation value. (Contributed by NM, 28-Feb-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| oveq1i.1 |
|
| oveq12i.2 |
|
| Ref | Expression |
|---|---|
| oveq12i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1i.1 |
. 2
| |
| 2 | oveq12i.2 |
. 2
| |
| 3 | oveq12 5934 |
. 2
| |
| 4 | 1, 2, 3 | mp2an 426 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 |
| This theorem is referenced by: oveq123i 5939 1lt2nq 7492 halfnqq 7496 caucvgprprlemnbj 7779 caucvgprprlemaddq 7794 m1p1sr 7846 m1m1sr 7847 axi2m1 7961 negdii 8329 3t3e9 9167 8th4div3 9229 halfpm6th 9230 numma 9519 decmul10add 9544 4t3lem 9572 9t11e99 9605 halfthird 9618 5recm6rec 9619 fz0to3un2pr 10217 sqdivapi 10734 sq4e2t8 10748 i4 10753 binom2i 10759 facp1 10841 fac2 10842 fac3 10843 fac4 10844 4bc2eq6 10885 cji 11086 fsumadd 11590 fsumsplitf 11592 fsumsplitsnun 11603 0.999... 11705 fprodmul 11775 fprodsplitf 11816 ef01bndlem 11940 cos2bnd 11944 3dvds2dec 12050 flodddiv4 12120 nn0gcdsq 12395 pythagtriplem16 12475 4sqlem19 12605 dec5nprm 12610 dec2nprm 12611 numexp2x 12621 decsplit 12625 karatsuba 12626 2exp5 12628 2exp11 12632 2exp16 12633 ecqusaddd 13446 isrhm 13792 cnmpt2res 14641 txmetcnp 14862 dveflem 15070 efhalfpi 15143 efipi 15145 sin2pi 15147 ef2pi 15149 sincosq3sgn 15172 sincosq4sgn 15173 sinq34lt0t 15175 sincos4thpi 15184 tan4thpi 15185 sincos6thpi 15186 sincos3rdpi 15187 pigt3 15188 1sgm2ppw 15339 lgsdi 15386 lgsquadlem1 15426 2lgsoddprmlem3c 15458 2lgsoddprmlem3d 15459 ex-exp 15481 ex-fac 15482 ex-bc 15483 |
| Copyright terms: Public domain | W3C validator |