ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano4 Unicode version

Theorem peano4 4574
Description: Two natural numbers are equal iff their successors are equal, i.e. the successor function is one-to-one. One of Peano's five postulates for arithmetic. Proposition 7.30(4) of [TakeutiZaring] p. 43. (Contributed by NM, 3-Sep-2003.)
Assertion
Ref Expression
peano4  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( suc  A  =  suc  B  <->  A  =  B ) )

Proof of Theorem peano4
StepHypRef Expression
1 suc11g 4534 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( suc  A  =  suc  B  <->  A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   suc csuc 4343   omcom 4567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-dif 3118  df-un 3120  df-sn 3582  df-pr 3583  df-suc 4349
This theorem is referenced by:  frecabcl  6367  pwle2  13878
  Copyright terms: Public domain W3C validator