ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano3 Unicode version

Theorem peano3 4644
Description: The successor of any natural number is not zero. One of Peano's five postulates for arithmetic. Proposition 7.30(3) of [TakeutiZaring] p. 42. (Contributed by NM, 3-Sep-2003.)
Assertion
Ref Expression
peano3  |-  ( A  e.  om  ->  suc  A  =/=  (/) )

Proof of Theorem peano3
StepHypRef Expression
1 nsuceq0g 4465 1  |-  ( A  e.  om  ->  suc  A  =/=  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2176    =/= wne 2376   (/)c0 3460   suc csuc 4412   omcom 4638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-v 2774  df-dif 3168  df-un 3170  df-nul 3461  df-sn 3639  df-suc 4418
This theorem is referenced by:  nndceq0  4666  frecabcl  6485  frecsuclem  6492  nnsucsssuc  6578  php5  6955  findcard2  6986  findcard2s  6987  omp1eomlem  7196  ctmlemr  7210  nnsf  15942  peano4nninf  15943
  Copyright terms: Public domain W3C validator