| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exmidontriim | Unicode version | ||
| Description: Excluded middle implies ordinal trichotomy. Lemma 10.4.1 of [HoTT], p. (varies). The proof follows the proof from the HoTT book fairly closely. (Contributed by Jim Kingdon, 10-Aug-2024.) |
| Ref | Expression |
|---|---|
| exmidontriim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1w 2266 |
. . . . . . 7
| |
| 2 | equequ1 1735 |
. . . . . . 7
| |
| 3 | eleq2 2269 |
. . . . . . 7
| |
| 4 | 1, 2, 3 | 3orbi123d 1324 |
. . . . . 6
|
| 5 | 4 | ralbidv 2506 |
. . . . 5
|
| 6 | 5 | imbi2d 230 |
. . . 4
|
| 7 | simplll 533 |
. . . . . . . 8
| |
| 8 | simpr 110 |
. . . . . . . 8
| |
| 9 | simplr 528 |
. . . . . . . 8
| |
| 10 | simpllr 534 |
. . . . . . . . 9
| |
| 11 | pm2.27 40 |
. . . . . . . . . . 11
| |
| 12 | 11 | ralimdv 2574 |
. . . . . . . . . 10
|
| 13 | 12 | ad2antlr 489 |
. . . . . . . . 9
|
| 14 | 10, 13 | mpd 13 |
. . . . . . . 8
|
| 15 | 7, 8, 9, 14 | exmidontriimlem4 7336 |
. . . . . . 7
|
| 16 | 15 | ralrimiva 2579 |
. . . . . 6
|
| 17 | eleq2 2269 |
. . . . . . . 8
| |
| 18 | equequ2 1736 |
. . . . . . . 8
| |
| 19 | eleq1w 2266 |
. . . . . . . 8
| |
| 20 | 17, 18, 19 | 3orbi123d 1324 |
. . . . . . 7
|
| 21 | 20 | cbvralv 2738 |
. . . . . 6
|
| 22 | 16, 21 | sylib 122 |
. . . . 5
|
| 23 | 22 | exp31 364 |
. . . 4
|
| 24 | 6, 23 | tfis2 4633 |
. . 3
|
| 25 | 24 | impcom 125 |
. 2
|
| 26 | 25 | ralrimiva 2579 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-setind 4585 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-uni 3851 df-tr 4143 df-exmid 4239 df-iord 4413 df-on 4415 |
| This theorem is referenced by: exmidontri 7351 onntri51 7352 exmidontri2or 7355 |
| Copyright terms: Public domain | W3C validator |