| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exmidontriim | Unicode version | ||
| Description: Excluded middle implies ordinal trichotomy. Lemma 10.4.1 of [HoTT], p. (varies). The proof follows the proof from the HoTT book fairly closely. (Contributed by Jim Kingdon, 10-Aug-2024.) |
| Ref | Expression |
|---|---|
| exmidontriim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1w 2268 |
. . . . . . 7
| |
| 2 | equequ1 1736 |
. . . . . . 7
| |
| 3 | eleq2 2271 |
. . . . . . 7
| |
| 4 | 1, 2, 3 | 3orbi123d 1324 |
. . . . . 6
|
| 5 | 4 | ralbidv 2508 |
. . . . 5
|
| 6 | 5 | imbi2d 230 |
. . . 4
|
| 7 | simplll 533 |
. . . . . . . 8
| |
| 8 | simpr 110 |
. . . . . . . 8
| |
| 9 | simplr 528 |
. . . . . . . 8
| |
| 10 | simpllr 534 |
. . . . . . . . 9
| |
| 11 | pm2.27 40 |
. . . . . . . . . . 11
| |
| 12 | 11 | ralimdv 2576 |
. . . . . . . . . 10
|
| 13 | 12 | ad2antlr 489 |
. . . . . . . . 9
|
| 14 | 10, 13 | mpd 13 |
. . . . . . . 8
|
| 15 | 7, 8, 9, 14 | exmidontriimlem4 7367 |
. . . . . . 7
|
| 16 | 15 | ralrimiva 2581 |
. . . . . 6
|
| 17 | eleq2 2271 |
. . . . . . . 8
| |
| 18 | equequ2 1737 |
. . . . . . . 8
| |
| 19 | eleq1w 2268 |
. . . . . . . 8
| |
| 20 | 17, 18, 19 | 3orbi123d 1324 |
. . . . . . 7
|
| 21 | 20 | cbvralv 2742 |
. . . . . 6
|
| 22 | 16, 21 | sylib 122 |
. . . . 5
|
| 23 | 22 | exp31 364 |
. . . 4
|
| 24 | 6, 23 | tfis2 4651 |
. . 3
|
| 25 | 24 | impcom 125 |
. 2
|
| 26 | 25 | ralrimiva 2581 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-setind 4603 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-dif 3176 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-uni 3865 df-tr 4159 df-exmid 4255 df-iord 4431 df-on 4433 |
| This theorem is referenced by: exmidontri 7385 onntri51 7386 exmidontri2or 7389 |
| Copyright terms: Public domain | W3C validator |