Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exmidontriim | Unicode version |
Description: Excluded middle implies ordinal trichotomy. Lemma 10.4.1 of [HoTT], p. (varies). The proof follows the proof from the HoTT book fairly closely. (Contributed by Jim Kingdon, 10-Aug-2024.) |
Ref | Expression |
---|---|
exmidontriim | EXMID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1w 2227 | . . . . . . 7 | |
2 | equequ1 1700 | . . . . . . 7 | |
3 | eleq2 2230 | . . . . . . 7 | |
4 | 1, 2, 3 | 3orbi123d 1301 | . . . . . 6 |
5 | 4 | ralbidv 2466 | . . . . 5 |
6 | 5 | imbi2d 229 | . . . 4 EXMID EXMID |
7 | simplll 523 | . . . . . . . 8 EXMID EXMID | |
8 | simpr 109 | . . . . . . . 8 EXMID EXMID | |
9 | simplr 520 | . . . . . . . 8 EXMID EXMID EXMID | |
10 | simpllr 524 | . . . . . . . . 9 EXMID EXMID EXMID | |
11 | pm2.27 40 | . . . . . . . . . . 11 EXMID EXMID | |
12 | 11 | ralimdv 2534 | . . . . . . . . . 10 EXMID EXMID |
13 | 12 | ad2antlr 481 | . . . . . . . . 9 EXMID EXMID EXMID |
14 | 10, 13 | mpd 13 | . . . . . . . 8 EXMID EXMID |
15 | 7, 8, 9, 14 | exmidontriimlem4 7180 | . . . . . . 7 EXMID EXMID |
16 | 15 | ralrimiva 2539 | . . . . . 6 EXMID EXMID |
17 | eleq2 2230 | . . . . . . . 8 | |
18 | equequ2 1701 | . . . . . . . 8 | |
19 | eleq1w 2227 | . . . . . . . 8 | |
20 | 17, 18, 19 | 3orbi123d 1301 | . . . . . . 7 |
21 | 20 | cbvralv 2692 | . . . . . 6 |
22 | 16, 21 | sylib 121 | . . . . 5 EXMID EXMID |
23 | 22 | exp31 362 | . . . 4 EXMID EXMID |
24 | 6, 23 | tfis2 4562 | . . 3 EXMID |
25 | 24 | impcom 124 | . 2 EXMID |
26 | 25 | ralrimiva 2539 | 1 EXMID |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3o 967 wcel 2136 wral 2444 EXMIDwem 4173 con0 4341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-uni 3790 df-tr 4081 df-exmid 4174 df-iord 4344 df-on 4346 |
This theorem is referenced by: exmidontri 7195 onntri51 7196 exmidontri2or 7199 |
Copyright terms: Public domain | W3C validator |