| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > exmidontriim | Unicode version | ||
| Description: Excluded middle implies ordinal trichotomy. Lemma 10.4.1 of [HoTT], p. (varies). The proof follows the proof from the HoTT book fairly closely. (Contributed by Jim Kingdon, 10-Aug-2024.) | 
| Ref | Expression | 
|---|---|
| exmidontriim | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eleq1w 2257 | 
. . . . . . 7
 | |
| 2 | equequ1 1726 | 
. . . . . . 7
 | |
| 3 | eleq2 2260 | 
. . . . . . 7
 | |
| 4 | 1, 2, 3 | 3orbi123d 1322 | 
. . . . . 6
 | 
| 5 | 4 | ralbidv 2497 | 
. . . . 5
 | 
| 6 | 5 | imbi2d 230 | 
. . . 4
 | 
| 7 | simplll 533 | 
. . . . . . . 8
 | |
| 8 | simpr 110 | 
. . . . . . . 8
 | |
| 9 | simplr 528 | 
. . . . . . . 8
 | |
| 10 | simpllr 534 | 
. . . . . . . . 9
 | |
| 11 | pm2.27 40 | 
. . . . . . . . . . 11
 | |
| 12 | 11 | ralimdv 2565 | 
. . . . . . . . . 10
 | 
| 13 | 12 | ad2antlr 489 | 
. . . . . . . . 9
 | 
| 14 | 10, 13 | mpd 13 | 
. . . . . . . 8
 | 
| 15 | 7, 8, 9, 14 | exmidontriimlem4 7291 | 
. . . . . . 7
 | 
| 16 | 15 | ralrimiva 2570 | 
. . . . . 6
 | 
| 17 | eleq2 2260 | 
. . . . . . . 8
 | |
| 18 | equequ2 1727 | 
. . . . . . . 8
 | |
| 19 | eleq1w 2257 | 
. . . . . . . 8
 | |
| 20 | 17, 18, 19 | 3orbi123d 1322 | 
. . . . . . 7
 | 
| 21 | 20 | cbvralv 2729 | 
. . . . . 6
 | 
| 22 | 16, 21 | sylib 122 | 
. . . . 5
 | 
| 23 | 22 | exp31 364 | 
. . . 4
 | 
| 24 | 6, 23 | tfis2 4621 | 
. . 3
 | 
| 25 | 24 | impcom 125 | 
. 2
 | 
| 26 | 25 | ralrimiva 2570 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-setind 4573 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-uni 3840 df-tr 4132 df-exmid 4228 df-iord 4401 df-on 4403 | 
| This theorem is referenced by: exmidontri 7306 onntri51 7307 exmidontri2or 7310 | 
| Copyright terms: Public domain | W3C validator |