ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  preq12d Unicode version

Theorem preq12d 3717
Description: Equality deduction for unordered pairs. (Contributed by NM, 19-Oct-2012.)
Hypotheses
Ref Expression
preq1d.1  |-  ( ph  ->  A  =  B )
preq12d.2  |-  ( ph  ->  C  =  D )
Assertion
Ref Expression
preq12d  |-  ( ph  ->  { A ,  C }  =  { B ,  D } )

Proof of Theorem preq12d
StepHypRef Expression
1 preq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 preq12d.2 . 2  |-  ( ph  ->  C  =  D )
3 preq12 3711 . 2  |-  ( ( A  =  B  /\  C  =  D )  ->  { A ,  C }  =  { B ,  D } )
41, 2, 3syl2anc 411 1  |-  ( ph  ->  { A ,  C }  =  { B ,  D } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1372   {cpr 3633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-un 3169  df-sn 3638  df-pr 3639
This theorem is referenced by:  opeq1  3818  opeq2  3819  xrminrecl  11555  xrminadd  11557  prdsval  13076  xpsfval  13151  xpsval  13155  ring1  13792  xmetxp  14950  xmetxpbl  14951  txmetcnp  14961  hovera  15090  hoverb  15091  hoverlt1  15092  hovergt0  15093  ivthdich  15096
  Copyright terms: Public domain W3C validator