| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > preq12d | Unicode version | ||
| Description: Equality deduction for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
| Ref | Expression |
|---|---|
| preq1d.1 |
|
| preq12d.2 |
|
| Ref | Expression |
|---|---|
| preq12d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq1d.1 |
. 2
| |
| 2 | preq12d.2 |
. 2
| |
| 3 | preq12 3711 |
. 2
| |
| 4 | 1, 2, 3 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-sn 3638 df-pr 3639 |
| This theorem is referenced by: opeq1 3818 opeq2 3819 xrminrecl 11555 xrminadd 11557 prdsval 13076 xpsfval 13151 xpsval 13155 ring1 13792 xmetxp 14950 xmetxpbl 14951 txmetcnp 14961 hovera 15090 hoverb 15091 hoverlt1 15092 hovergt0 15093 ivthdich 15096 |
| Copyright terms: Public domain | W3C validator |