ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  preq12d Unicode version

Theorem preq12d 3751
Description: Equality deduction for unordered pairs. (Contributed by NM, 19-Oct-2012.)
Hypotheses
Ref Expression
preq1d.1  |-  ( ph  ->  A  =  B )
preq12d.2  |-  ( ph  ->  C  =  D )
Assertion
Ref Expression
preq12d  |-  ( ph  ->  { A ,  C }  =  { B ,  D } )

Proof of Theorem preq12d
StepHypRef Expression
1 preq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 preq12d.2 . 2  |-  ( ph  ->  C  =  D )
3 preq12 3745 . 2  |-  ( ( A  =  B  /\  C  =  D )  ->  { A ,  C }  =  { B ,  D } )
41, 2, 3syl2anc 411 1  |-  ( ph  ->  { A ,  C }  =  { B ,  D } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395   {cpr 3667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673
This theorem is referenced by:  opeq1  3856  opeq2  3857  xrminrecl  11779  xrminadd  11781  prdsval  13301  xpsfval  13376  xpsval  13380  ring1  14017  xmetxp  15175  xmetxpbl  15176  txmetcnp  15186  hovera  15315  hoverb  15316  hoverlt1  15317  hovergt0  15318  ivthdich  15321  wkslem1  16026  wkslem2  16027  iswlk  16029
  Copyright terms: Public domain W3C validator