| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > preq12d | Unicode version | ||
| Description: Equality deduction for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
| Ref | Expression |
|---|---|
| preq1d.1 |
|
| preq12d.2 |
|
| Ref | Expression |
|---|---|
| preq12d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq1d.1 |
. 2
| |
| 2 | preq12d.2 |
. 2
| |
| 3 | preq12 3717 |
. 2
| |
| 4 | 1, 2, 3 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 df-sn 3644 df-pr 3645 |
| This theorem is referenced by: opeq1 3828 opeq2 3829 xrminrecl 11669 xrminadd 11671 prdsval 13190 xpsfval 13265 xpsval 13269 ring1 13906 xmetxp 15064 xmetxpbl 15065 txmetcnp 15075 hovera 15204 hoverb 15205 hoverlt1 15206 hovergt0 15207 ivthdich 15210 |
| Copyright terms: Public domain | W3C validator |