| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > preq12d | Unicode version | ||
| Description: Equality deduction for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
| Ref | Expression |
|---|---|
| preq1d.1 |
|
| preq12d.2 |
|
| Ref | Expression |
|---|---|
| preq12d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq1d.1 |
. 2
| |
| 2 | preq12d.2 |
. 2
| |
| 3 | preq12 3745 |
. 2
| |
| 4 | 1, 2, 3 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 |
| This theorem is referenced by: opeq1 3856 opeq2 3857 xrminrecl 11779 xrminadd 11781 prdsval 13301 xpsfval 13376 xpsval 13380 ring1 14017 xmetxp 15175 xmetxpbl 15176 txmetcnp 15186 hovera 15315 hoverb 15316 hoverlt1 15317 hovergt0 15318 ivthdich 15321 wkslem1 16026 wkslem2 16027 iswlk 16029 |
| Copyright terms: Public domain | W3C validator |