| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > preq1 | Unicode version | ||
| Description: Equality theorem for unordered pairs. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| preq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 3654 |
. . 3
| |
| 2 | 1 | uneq1d 3334 |
. 2
|
| 3 | df-pr 3650 |
. 2
| |
| 4 | df-pr 3650 |
. 2
| |
| 5 | 2, 3, 4 | 3eqtr4g 2265 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 |
| This theorem is referenced by: preq2 3721 preq12 3722 preq1i 3723 preq1d 3726 tpeq1 3729 prnzg 3768 preq12b 3824 preq12bg 3827 opeq1 3833 uniprg 3879 intprg 3932 prexg 4271 opthreg 4622 en2 6936 bdxmet 15088 hovera 15234 hoverb 15235 hoverlt1 15236 hovergt0 15237 ivthdich 15240 upgrex 15814 bj-prexg 16046 |
| Copyright terms: Public domain | W3C validator |