ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  preq1 Unicode version

Theorem preq1 3720
Description: Equality theorem for unordered pairs. (Contributed by NM, 29-Mar-1998.)
Assertion
Ref Expression
preq1  |-  ( A  =  B  ->  { A ,  C }  =  { B ,  C }
)

Proof of Theorem preq1
StepHypRef Expression
1 sneq 3654 . . 3  |-  ( A  =  B  ->  { A }  =  { B } )
21uneq1d 3334 . 2  |-  ( A  =  B  ->  ( { A }  u.  { C } )  =  ( { B }  u.  { C } ) )
3 df-pr 3650 . 2  |-  { A ,  C }  =  ( { A }  u.  { C } )
4 df-pr 3650 . 2  |-  { B ,  C }  =  ( { B }  u.  { C } )
52, 3, 43eqtr4g 2265 1  |-  ( A  =  B  ->  { A ,  C }  =  { B ,  C }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    u. cun 3172   {csn 3643   {cpr 3644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-sn 3649  df-pr 3650
This theorem is referenced by:  preq2  3721  preq12  3722  preq1i  3723  preq1d  3726  tpeq1  3729  prnzg  3768  preq12b  3824  preq12bg  3827  opeq1  3833  uniprg  3879  intprg  3932  prexg  4271  opthreg  4622  en2  6936  bdxmet  15088  hovera  15234  hoverb  15235  hoverlt1  15236  hovergt0  15237  ivthdich  15240  upgrex  15814  bj-prexg  16046
  Copyright terms: Public domain W3C validator