ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  preq1 Unicode version

Theorem preq1 3743
Description: Equality theorem for unordered pairs. (Contributed by NM, 29-Mar-1998.)
Assertion
Ref Expression
preq1  |-  ( A  =  B  ->  { A ,  C }  =  { B ,  C }
)

Proof of Theorem preq1
StepHypRef Expression
1 sneq 3677 . . 3  |-  ( A  =  B  ->  { A }  =  { B } )
21uneq1d 3357 . 2  |-  ( A  =  B  ->  ( { A }  u.  { C } )  =  ( { B }  u.  { C } ) )
3 df-pr 3673 . 2  |-  { A ,  C }  =  ( { A }  u.  { C } )
4 df-pr 3673 . 2  |-  { B ,  C }  =  ( { B }  u.  { C } )
52, 3, 43eqtr4g 2287 1  |-  ( A  =  B  ->  { A ,  C }  =  { B ,  C }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    u. cun 3195   {csn 3666   {cpr 3667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673
This theorem is referenced by:  preq2  3744  preq12  3745  preq1i  3746  preq1d  3749  tpeq1  3752  prnzg  3792  preq12b  3848  preq12bg  3851  opeq1  3857  uniprg  3903  intprg  3956  prexg  4295  opthreg  4648  en2  6973  bdxmet  15175  hovera  15321  hoverb  15322  hoverlt1  15323  hovergt0  15324  ivthdich  15327  upgrex  15903  usgredg4  16013  usgredg2vlem2  16021  usgredg2v  16022  bj-prexg  16274
  Copyright terms: Public domain W3C validator