ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  preq1 Unicode version

Theorem preq1 3700
Description: Equality theorem for unordered pairs. (Contributed by NM, 29-Mar-1998.)
Assertion
Ref Expression
preq1  |-  ( A  =  B  ->  { A ,  C }  =  { B ,  C }
)

Proof of Theorem preq1
StepHypRef Expression
1 sneq 3634 . . 3  |-  ( A  =  B  ->  { A }  =  { B } )
21uneq1d 3317 . 2  |-  ( A  =  B  ->  ( { A }  u.  { C } )  =  ( { B }  u.  { C } ) )
3 df-pr 3630 . 2  |-  { A ,  C }  =  ( { A }  u.  { C } )
4 df-pr 3630 . 2  |-  { B ,  C }  =  ( { B }  u.  { C } )
52, 3, 43eqtr4g 2254 1  |-  ( A  =  B  ->  { A ,  C }  =  { B ,  C }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    u. cun 3155   {csn 3623   {cpr 3624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-sn 3629  df-pr 3630
This theorem is referenced by:  preq2  3701  preq12  3702  preq1i  3703  preq1d  3706  tpeq1  3709  prnzg  3747  preq12b  3801  preq12bg  3804  opeq1  3809  uniprg  3855  intprg  3908  prexg  4245  opthreg  4593  bdxmet  14821  hovera  14967  hoverb  14968  hoverlt1  14969  hovergt0  14970  ivthdich  14973  bj-prexg  15641
  Copyright terms: Public domain W3C validator