| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > preq1 | Unicode version | ||
| Description: Equality theorem for unordered pairs. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| preq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 3644 |
. . 3
| |
| 2 | 1 | uneq1d 3326 |
. 2
|
| 3 | df-pr 3640 |
. 2
| |
| 4 | df-pr 3640 |
. 2
| |
| 5 | 2, 3, 4 | 3eqtr4g 2263 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 |
| This theorem is referenced by: preq2 3711 preq12 3712 preq1i 3713 preq1d 3716 tpeq1 3719 prnzg 3757 preq12b 3811 preq12bg 3814 opeq1 3819 uniprg 3865 intprg 3918 prexg 4255 opthreg 4604 en2 6912 bdxmet 14973 hovera 15119 hoverb 15120 hoverlt1 15121 hovergt0 15122 ivthdich 15125 bj-prexg 15847 |
| Copyright terms: Public domain | W3C validator |