ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  preq1 Unicode version

Theorem preq1 3653
Description: Equality theorem for unordered pairs. (Contributed by NM, 29-Mar-1998.)
Assertion
Ref Expression
preq1  |-  ( A  =  B  ->  { A ,  C }  =  { B ,  C }
)

Proof of Theorem preq1
StepHypRef Expression
1 sneq 3587 . . 3  |-  ( A  =  B  ->  { A }  =  { B } )
21uneq1d 3275 . 2  |-  ( A  =  B  ->  ( { A }  u.  { C } )  =  ( { B }  u.  { C } ) )
3 df-pr 3583 . 2  |-  { A ,  C }  =  ( { A }  u.  { C } )
4 df-pr 3583 . 2  |-  { B ,  C }  =  ( { B }  u.  { C } )
52, 3, 43eqtr4g 2224 1  |-  ( A  =  B  ->  { A ,  C }  =  { B ,  C }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    u. cun 3114   {csn 3576   {cpr 3577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583
This theorem is referenced by:  preq2  3654  preq12  3655  preq1i  3656  preq1d  3659  tpeq1  3662  prnzg  3700  preq12b  3750  preq12bg  3753  opeq1  3758  uniprg  3804  intprg  3857  prexg  4189  opthreg  4533  bdxmet  13151  bj-prexg  13803
  Copyright terms: Public domain W3C validator