ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prsspw Unicode version

Theorem prsspw 3752
Description: An unordered pair belongs to the power class of a class iff each member belongs to the class. (Contributed by NM, 10-Dec-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Hypotheses
Ref Expression
prsspw.1  |-  A  e. 
_V
prsspw.2  |-  B  e. 
_V
Assertion
Ref Expression
prsspw  |-  ( { A ,  B }  C_ 
~P C  <->  ( A  C_  C  /\  B  C_  C ) )

Proof of Theorem prsspw
StepHypRef Expression
1 prsspw.1 . . 3  |-  A  e. 
_V
2 prsspw.2 . . 3  |-  B  e. 
_V
31, 2prss 3736 . 2  |-  ( ( A  e.  ~P C  /\  B  e.  ~P C )  <->  { A ,  B }  C_  ~P C )
41elpw 3572 . . 3  |-  ( A  e.  ~P C  <->  A  C_  C
)
52elpw 3572 . . 3  |-  ( B  e.  ~P C  <->  B  C_  C
)
64, 5anbi12i 457 . 2  |-  ( ( A  e.  ~P C  /\  B  e.  ~P C )  <->  ( A  C_  C  /\  B  C_  C ) )
73, 6bitr3i 185 1  |-  ( { A ,  B }  C_ 
~P C  <->  ( A  C_  C  /\  B  C_  C ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    e. wcel 2141   _Vcvv 2730    C_ wss 3121   ~Pcpw 3566   {cpr 3584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator