ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prsspw Unicode version

Theorem prsspw 3792
Description: An unordered pair belongs to the power class of a class iff each member belongs to the class. (Contributed by NM, 10-Dec-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Hypotheses
Ref Expression
prsspw.1  |-  A  e. 
_V
prsspw.2  |-  B  e. 
_V
Assertion
Ref Expression
prsspw  |-  ( { A ,  B }  C_ 
~P C  <->  ( A  C_  C  /\  B  C_  C ) )

Proof of Theorem prsspw
StepHypRef Expression
1 prsspw.1 . . 3  |-  A  e. 
_V
2 prsspw.2 . . 3  |-  B  e. 
_V
31, 2prss 3775 . 2  |-  ( ( A  e.  ~P C  /\  B  e.  ~P C )  <->  { A ,  B }  C_  ~P C )
41elpw 3608 . . 3  |-  ( A  e.  ~P C  <->  A  C_  C
)
52elpw 3608 . . 3  |-  ( B  e.  ~P C  <->  B  C_  C
)
64, 5anbi12i 460 . 2  |-  ( ( A  e.  ~P C  /\  B  e.  ~P C )  <->  ( A  C_  C  /\  B  C_  C ) )
73, 6bitr3i 186 1  |-  ( { A ,  B }  C_ 
~P C  <->  ( A  C_  C  /\  B  C_  C ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    e. wcel 2164   _Vcvv 2760    C_ wss 3154   ~Pcpw 3602   {cpr 3620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator