ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prsspw GIF version

Theorem prsspw 3842
Description: An unordered pair belongs to the power class of a class iff each member belongs to the class. (Contributed by NM, 10-Dec-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Hypotheses
Ref Expression
prsspw.1 𝐴 ∈ V
prsspw.2 𝐵 ∈ V
Assertion
Ref Expression
prsspw ({𝐴, 𝐵} ⊆ 𝒫 𝐶 ↔ (𝐴𝐶𝐵𝐶))

Proof of Theorem prsspw
StepHypRef Expression
1 prsspw.1 . . 3 𝐴 ∈ V
2 prsspw.2 . . 3 𝐵 ∈ V
31, 2prss 3823 . 2 ((𝐴 ∈ 𝒫 𝐶𝐵 ∈ 𝒫 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝒫 𝐶)
41elpw 3655 . . 3 (𝐴 ∈ 𝒫 𝐶𝐴𝐶)
52elpw 3655 . . 3 (𝐵 ∈ 𝒫 𝐶𝐵𝐶)
64, 5anbi12i 460 . 2 ((𝐴 ∈ 𝒫 𝐶𝐵 ∈ 𝒫 𝐶) ↔ (𝐴𝐶𝐵𝐶))
73, 6bitr3i 186 1 ({𝐴, 𝐵} ⊆ 𝒫 𝐶 ↔ (𝐴𝐶𝐵𝐶))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wcel 2200  Vcvv 2799  wss 3197  𝒫 cpw 3649  {cpr 3667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator