ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prsspw GIF version

Theorem prsspw 3795
Description: An unordered pair belongs to the power class of a class iff each member belongs to the class. (Contributed by NM, 10-Dec-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Hypotheses
Ref Expression
prsspw.1 𝐴 ∈ V
prsspw.2 𝐵 ∈ V
Assertion
Ref Expression
prsspw ({𝐴, 𝐵} ⊆ 𝒫 𝐶 ↔ (𝐴𝐶𝐵𝐶))

Proof of Theorem prsspw
StepHypRef Expression
1 prsspw.1 . . 3 𝐴 ∈ V
2 prsspw.2 . . 3 𝐵 ∈ V
31, 2prss 3778 . 2 ((𝐴 ∈ 𝒫 𝐶𝐵 ∈ 𝒫 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝒫 𝐶)
41elpw 3611 . . 3 (𝐴 ∈ 𝒫 𝐶𝐴𝐶)
52elpw 3611 . . 3 (𝐵 ∈ 𝒫 𝐶𝐵𝐶)
64, 5anbi12i 460 . 2 ((𝐴 ∈ 𝒫 𝐶𝐵 ∈ 𝒫 𝐶) ↔ (𝐴𝐶𝐵𝐶))
73, 6bitr3i 186 1 ({𝐴, 𝐵} ⊆ 𝒫 𝐶 ↔ (𝐴𝐶𝐵𝐶))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wcel 2167  Vcvv 2763  wss 3157  𝒫 cpw 3605  {cpr 3623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator