ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prsspw GIF version

Theorem prsspw 3805
Description: An unordered pair belongs to the power class of a class iff each member belongs to the class. (Contributed by NM, 10-Dec-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Hypotheses
Ref Expression
prsspw.1 𝐴 ∈ V
prsspw.2 𝐵 ∈ V
Assertion
Ref Expression
prsspw ({𝐴, 𝐵} ⊆ 𝒫 𝐶 ↔ (𝐴𝐶𝐵𝐶))

Proof of Theorem prsspw
StepHypRef Expression
1 prsspw.1 . . 3 𝐴 ∈ V
2 prsspw.2 . . 3 𝐵 ∈ V
31, 2prss 3788 . 2 ((𝐴 ∈ 𝒫 𝐶𝐵 ∈ 𝒫 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝒫 𝐶)
41elpw 3621 . . 3 (𝐴 ∈ 𝒫 𝐶𝐴𝐶)
52elpw 3621 . . 3 (𝐵 ∈ 𝒫 𝐶𝐵𝐶)
64, 5anbi12i 460 . 2 ((𝐴 ∈ 𝒫 𝐶𝐵 ∈ 𝒫 𝐶) ↔ (𝐴𝐶𝐵𝐶))
73, 6bitr3i 186 1 ({𝐴, 𝐵} ⊆ 𝒫 𝐶 ↔ (𝐴𝐶𝐵𝐶))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wcel 2175  Vcvv 2771  wss 3165  𝒫 cpw 3615  {cpr 3633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator