ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prsspw GIF version

Theorem prsspw 3752
Description: An unordered pair belongs to the power class of a class iff each member belongs to the class. (Contributed by NM, 10-Dec-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Hypotheses
Ref Expression
prsspw.1 𝐴 ∈ V
prsspw.2 𝐵 ∈ V
Assertion
Ref Expression
prsspw ({𝐴, 𝐵} ⊆ 𝒫 𝐶 ↔ (𝐴𝐶𝐵𝐶))

Proof of Theorem prsspw
StepHypRef Expression
1 prsspw.1 . . 3 𝐴 ∈ V
2 prsspw.2 . . 3 𝐵 ∈ V
31, 2prss 3736 . 2 ((𝐴 ∈ 𝒫 𝐶𝐵 ∈ 𝒫 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝒫 𝐶)
41elpw 3572 . . 3 (𝐴 ∈ 𝒫 𝐶𝐴𝐶)
52elpw 3572 . . 3 (𝐵 ∈ 𝒫 𝐶𝐵𝐶)
64, 5anbi12i 457 . 2 ((𝐴 ∈ 𝒫 𝐶𝐵 ∈ 𝒫 𝐶) ↔ (𝐴𝐶𝐵𝐶))
73, 6bitr3i 185 1 ({𝐴, 𝐵} ⊆ 𝒫 𝐶 ↔ (𝐴𝐶𝐵𝐶))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wcel 2141  Vcvv 2730  wss 3121  𝒫 cpw 3566  {cpr 3584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator