![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > prsspw | GIF version |
Description: An unordered pair belongs to the power class of a class iff each member belongs to the class. (Contributed by NM, 10-Dec-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
prsspw.1 | ⊢ 𝐴 ∈ V |
prsspw.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
prsspw | ⊢ ({𝐴, 𝐵} ⊆ 𝒫 𝐶 ↔ (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prsspw.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | prsspw.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | prss 3599 | . 2 ⊢ ((𝐴 ∈ 𝒫 𝐶 ∧ 𝐵 ∈ 𝒫 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝒫 𝐶) |
4 | 1 | elpw 3439 | . . 3 ⊢ (𝐴 ∈ 𝒫 𝐶 ↔ 𝐴 ⊆ 𝐶) |
5 | 2 | elpw 3439 | . . 3 ⊢ (𝐵 ∈ 𝒫 𝐶 ↔ 𝐵 ⊆ 𝐶) |
6 | 4, 5 | anbi12i 449 | . 2 ⊢ ((𝐴 ∈ 𝒫 𝐶 ∧ 𝐵 ∈ 𝒫 𝐶) ↔ (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶)) |
7 | 3, 6 | bitr3i 185 | 1 ⊢ ({𝐴, 𝐵} ⊆ 𝒫 𝐶 ↔ (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∈ wcel 1439 Vcvv 2620 ⊆ wss 3000 𝒫 cpw 3433 {cpr 3451 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-tru 1293 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-v 2622 df-un 3004 df-in 3006 df-ss 3013 df-pw 3435 df-sn 3456 df-pr 3457 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |