Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > prsspw | GIF version |
Description: An unordered pair belongs to the power class of a class iff each member belongs to the class. (Contributed by NM, 10-Dec-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
prsspw.1 | ⊢ 𝐴 ∈ V |
prsspw.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
prsspw | ⊢ ({𝐴, 𝐵} ⊆ 𝒫 𝐶 ↔ (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prsspw.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | prsspw.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | prss 3736 | . 2 ⊢ ((𝐴 ∈ 𝒫 𝐶 ∧ 𝐵 ∈ 𝒫 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝒫 𝐶) |
4 | 1 | elpw 3572 | . . 3 ⊢ (𝐴 ∈ 𝒫 𝐶 ↔ 𝐴 ⊆ 𝐶) |
5 | 2 | elpw 3572 | . . 3 ⊢ (𝐵 ∈ 𝒫 𝐶 ↔ 𝐵 ⊆ 𝐶) |
6 | 4, 5 | anbi12i 457 | . 2 ⊢ ((𝐴 ∈ 𝒫 𝐶 ∧ 𝐵 ∈ 𝒫 𝐶) ↔ (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶)) |
7 | 3, 6 | bitr3i 185 | 1 ⊢ ({𝐴, 𝐵} ⊆ 𝒫 𝐶 ↔ (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∈ wcel 2141 Vcvv 2730 ⊆ wss 3121 𝒫 cpw 3566 {cpr 3584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |