| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prsspw | GIF version | ||
| Description: An unordered pair belongs to the power class of a class iff each member belongs to the class. (Contributed by NM, 10-Dec-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| prsspw.1 | ⊢ 𝐴 ∈ V |
| prsspw.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| prsspw | ⊢ ({𝐴, 𝐵} ⊆ 𝒫 𝐶 ↔ (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prsspw.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | prsspw.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | 1, 2 | prss 3795 | . 2 ⊢ ((𝐴 ∈ 𝒫 𝐶 ∧ 𝐵 ∈ 𝒫 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝒫 𝐶) |
| 4 | 1 | elpw 3627 | . . 3 ⊢ (𝐴 ∈ 𝒫 𝐶 ↔ 𝐴 ⊆ 𝐶) |
| 5 | 2 | elpw 3627 | . . 3 ⊢ (𝐵 ∈ 𝒫 𝐶 ↔ 𝐵 ⊆ 𝐶) |
| 6 | 4, 5 | anbi12i 460 | . 2 ⊢ ((𝐴 ∈ 𝒫 𝐶 ∧ 𝐵 ∈ 𝒫 𝐶) ↔ (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶)) |
| 7 | 3, 6 | bitr3i 186 | 1 ⊢ ({𝐴, 𝐵} ⊆ 𝒫 𝐶 ↔ (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∈ wcel 2177 Vcvv 2773 ⊆ wss 3170 𝒫 cpw 3621 {cpr 3639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |