ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prss Unicode version

Theorem prss 3729
Description: A pair of elements of a class is a subset of the class. Theorem 7.5 of [Quine] p. 49. (Contributed by NM, 30-May-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Hypotheses
Ref Expression
prss.1  |-  A  e. 
_V
prss.2  |-  B  e. 
_V
Assertion
Ref Expression
prss  |-  ( ( A  e.  C  /\  B  e.  C )  <->  { A ,  B }  C_  C )

Proof of Theorem prss
StepHypRef Expression
1 unss 3296 . 2  |-  ( ( { A }  C_  C  /\  { B }  C_  C )  <->  ( { A }  u.  { B } )  C_  C
)
2 prss.1 . . . 4  |-  A  e. 
_V
32snss 3702 . . 3  |-  ( A  e.  C  <->  { A }  C_  C )
4 prss.2 . . . 4  |-  B  e. 
_V
54snss 3702 . . 3  |-  ( B  e.  C  <->  { B }  C_  C )
63, 5anbi12i 456 . 2  |-  ( ( A  e.  C  /\  B  e.  C )  <->  ( { A }  C_  C  /\  { B }  C_  C ) )
7 df-pr 3583 . . 3  |-  { A ,  B }  =  ( { A }  u.  { B } )
87sseq1i 3168 . 2  |-  ( { A ,  B }  C_  C  <->  ( { A }  u.  { B } )  C_  C
)
91, 6, 83bitr4i 211 1  |-  ( ( A  e.  C  /\  B  e.  C )  <->  { A ,  B }  C_  C )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    e. wcel 2136   _Vcvv 2726    u. cun 3114    C_ wss 3116   {csn 3576   {cpr 3577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-pr 3583
This theorem is referenced by:  tpss  3738  prsspw  3745  exmidpw  6874  pw1ne1  7185
  Copyright terms: Public domain W3C validator