ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prsspwg GIF version

Theorem prsspwg 3752
Description: An unordered pair belongs to the power class of a class iff each member belongs to the class. (Contributed by Thierry Arnoux, 3-Oct-2016.) (Revised by NM, 18-Jan-2018.)
Assertion
Ref Expression
prsspwg ((𝐴𝑉𝐵𝑊) → ({𝐴, 𝐵} ⊆ 𝒫 𝐶 ↔ (𝐴𝐶𝐵𝐶)))

Proof of Theorem prsspwg
StepHypRef Expression
1 prssg 3749 . 2 ((𝐴𝑉𝐵𝑊) → ((𝐴 ∈ 𝒫 𝐶𝐵 ∈ 𝒫 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝒫 𝐶))
2 elpwg 3583 . . 3 (𝐴𝑉 → (𝐴 ∈ 𝒫 𝐶𝐴𝐶))
3 elpwg 3583 . . 3 (𝐵𝑊 → (𝐵 ∈ 𝒫 𝐶𝐵𝐶))
42, 3bi2anan9 606 . 2 ((𝐴𝑉𝐵𝑊) → ((𝐴 ∈ 𝒫 𝐶𝐵 ∈ 𝒫 𝐶) ↔ (𝐴𝐶𝐵𝐶)))
51, 4bitr3d 190 1 ((𝐴𝑉𝐵𝑊) → ({𝐴, 𝐵} ⊆ 𝒫 𝐶 ↔ (𝐴𝐶𝐵𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2148  wss 3129  𝒫 cpw 3575  {cpr 3593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2739  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator