ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prssd Unicode version

Theorem prssd 3827
Description: Deduction version of prssi 3826: A pair of elements of a class is a subset of the class. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
prssd.1  |-  ( ph  ->  A  e.  C )
prssd.2  |-  ( ph  ->  B  e.  C )
Assertion
Ref Expression
prssd  |-  ( ph  ->  { A ,  B }  C_  C )

Proof of Theorem prssd
StepHypRef Expression
1 prssd.1 . 2  |-  ( ph  ->  A  e.  C )
2 prssd.2 . 2  |-  ( ph  ->  B  e.  C )
3 prssi 3826 . 2  |-  ( ( A  e.  C  /\  B  e.  C )  ->  { A ,  B }  C_  C )
41, 2, 3syl2anc 411 1  |-  ( ph  ->  { A ,  B }  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2200    C_ wss 3197   {cpr 3667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673
This theorem is referenced by:  bassetsnn  13089  0idnsgd  13753  isnzr2  14148  lspprcl  14357  lsptpcl  14358  lspprss  14370  lspprid1  14375  perfectlem2  15674  upgr1edc  15921
  Copyright terms: Public domain W3C validator