ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prssd Unicode version

Theorem prssd 3803
Description: Deduction version of prssi 3802: A pair of elements of a class is a subset of the class. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
prssd.1  |-  ( ph  ->  A  e.  C )
prssd.2  |-  ( ph  ->  B  e.  C )
Assertion
Ref Expression
prssd  |-  ( ph  ->  { A ,  B }  C_  C )

Proof of Theorem prssd
StepHypRef Expression
1 prssd.1 . 2  |-  ( ph  ->  A  e.  C )
2 prssd.2 . 2  |-  ( ph  ->  B  e.  C )
3 prssi 3802 . 2  |-  ( ( A  e.  C  /\  B  e.  C )  ->  { A ,  B }  C_  C )
41, 2, 3syl2anc 411 1  |-  ( ph  ->  { A ,  B }  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2178    C_ wss 3174   {cpr 3644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-sn 3649  df-pr 3650
This theorem is referenced by:  0idnsgd  13667  isnzr2  14061  lspprcl  14270  lsptpcl  14271  lspprss  14283  lspprid1  14288  perfectlem2  15587  upgr1edc  15829
  Copyright terms: Public domain W3C validator