ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prssd Unicode version

Theorem prssd 3781
Description: Deduction version of prssi 3780: A pair of elements of a class is a subset of the class. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
prssd.1  |-  ( ph  ->  A  e.  C )
prssd.2  |-  ( ph  ->  B  e.  C )
Assertion
Ref Expression
prssd  |-  ( ph  ->  { A ,  B }  C_  C )

Proof of Theorem prssd
StepHypRef Expression
1 prssd.1 . 2  |-  ( ph  ->  A  e.  C )
2 prssd.2 . 2  |-  ( ph  ->  B  e.  C )
3 prssi 3780 . 2  |-  ( ( A  e.  C  /\  B  e.  C )  ->  { A ,  B }  C_  C )
41, 2, 3syl2anc 411 1  |-  ( ph  ->  { A ,  B }  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2167    C_ wss 3157   {cpr 3623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3628  df-pr 3629
This theorem is referenced by:  0idnsgd  13322  isnzr2  13716  lspprcl  13925  lsptpcl  13926  lspprss  13938  lspprid1  13943
  Copyright terms: Public domain W3C validator