ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sn0cld Unicode version

Theorem sn0cld 14305
Description: The closed sets of the topology  { (/) }. (Contributed by FL, 5-Jan-2009.)
Assertion
Ref Expression
sn0cld  |-  ( Clsd `  { (/) } )  =  { (/) }

Proof of Theorem sn0cld
StepHypRef Expression
1 0ex 4156 . . 3  |-  (/)  e.  _V
2 discld 14304 . . 3  |-  ( (/)  e.  _V  ->  ( Clsd `  ~P (/) )  =  ~P (/) )
31, 2ax-mp 5 . 2  |-  ( Clsd `  ~P (/) )  =  ~P (/)
4 pw0 3765 . . 3  |-  ~P (/)  =  { (/)
}
54fveq2i 5557 . 2  |-  ( Clsd `  ~P (/) )  =  (
Clsd `  { (/) } )
63, 5, 43eqtr3i 2222 1  |-  ( Clsd `  { (/) } )  =  { (/) }
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2164   _Vcvv 2760   (/)c0 3446   ~Pcpw 3601   {csn 3618   ` cfv 5254   Clsdccld 14260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-top 14166  df-cld 14263
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator