Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > difsnss | Unicode version |
Description: If we remove a single element from a class then put it back in, we end up with a subset of the original class. If equality is decidable, we can replace subset with equality as seen in nndifsnid 6498. (Contributed by Jim Kingdon, 10-Aug-2018.) |
Ref | Expression |
---|---|
difsnss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uncom 3277 | . 2 | |
2 | snssi 3733 | . . 3 | |
3 | undifss 3501 | . . 3 | |
4 | 2, 3 | sylib 122 | . 2 |
5 | 1, 4 | eqsstrid 3199 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2146 cdif 3124 cun 3125 wss 3127 csn 3589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-sn 3595 |
This theorem is referenced by: fnsnsplitss 5707 dcdifsnid 6495 |
Copyright terms: Public domain | W3C validator |