ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difsnss Unicode version

Theorem difsnss 3768
Description: If we remove a single element from a class then put it back in, we end up with a subset of the original class. If equality is decidable, we can replace subset with equality as seen in nndifsnid 6565. (Contributed by Jim Kingdon, 10-Aug-2018.)
Assertion
Ref Expression
difsnss  |-  ( B  e.  A  ->  (
( A  \  { B } )  u.  { B } )  C_  A
)

Proof of Theorem difsnss
StepHypRef Expression
1 uncom 3307 . 2  |-  ( ( A  \  { B } )  u.  { B } )  =  ( { B }  u.  ( A  \  { B } ) )
2 snssi 3766 . . 3  |-  ( B  e.  A  ->  { B }  C_  A )
3 undifss 3531 . . 3  |-  ( { B }  C_  A  <->  ( { B }  u.  ( A  \  { B } ) )  C_  A )
42, 3sylib 122 . 2  |-  ( B  e.  A  ->  ( { B }  u.  ( A  \  { B }
) )  C_  A
)
51, 4eqsstrid 3229 1  |-  ( B  e.  A  ->  (
( A  \  { B } )  u.  { B } )  C_  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2167    \ cdif 3154    u. cun 3155    C_ wss 3157   {csn 3622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-sn 3628
This theorem is referenced by:  fnsnsplitss  5761  dcdifsnid  6562
  Copyright terms: Public domain W3C validator