ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difsnss Unicode version

Theorem difsnss 3735
Description: If we remove a single element from a class then put it back in, we end up with a subset of the original class. If equality is decidable, we can replace subset with equality as seen in nndifsnid 6498. (Contributed by Jim Kingdon, 10-Aug-2018.)
Assertion
Ref Expression
difsnss  |-  ( B  e.  A  ->  (
( A  \  { B } )  u.  { B } )  C_  A
)

Proof of Theorem difsnss
StepHypRef Expression
1 uncom 3277 . 2  |-  ( ( A  \  { B } )  u.  { B } )  =  ( { B }  u.  ( A  \  { B } ) )
2 snssi 3733 . . 3  |-  ( B  e.  A  ->  { B }  C_  A )
3 undifss 3501 . . 3  |-  ( { B }  C_  A  <->  ( { B }  u.  ( A  \  { B } ) )  C_  A )
42, 3sylib 122 . 2  |-  ( B  e.  A  ->  ( { B }  u.  ( A  \  { B }
) )  C_  A
)
51, 4eqsstrid 3199 1  |-  ( B  e.  A  ->  (
( A  \  { B } )  u.  { B } )  C_  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2146    \ cdif 3124    u. cun 3125    C_ wss 3127   {csn 3589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-v 2737  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-sn 3595
This theorem is referenced by:  fnsnsplitss  5707  dcdifsnid  6495
  Copyright terms: Public domain W3C validator