ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ss0b Unicode version

Theorem ss0b 3508
Description: Any subset of the empty set is empty. Theorem 5 of [Suppes] p. 23 and its converse. (Contributed by NM, 17-Sep-2003.)
Assertion
Ref Expression
ss0b  |-  ( A 
C_  (/)  <->  A  =  (/) )

Proof of Theorem ss0b
StepHypRef Expression
1 0ss 3507 . . 3  |-  (/)  C_  A
2 eqss 3216 . . 3  |-  ( A  =  (/)  <->  ( A  C_  (/) 
/\  (/)  C_  A )
)
31, 2mpbiran2 944 . 2  |-  ( A  =  (/)  <->  A  C_  (/) )
43bicomi 132 1  |-  ( A 
C_  (/)  <->  A  =  (/) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1373    C_ wss 3174   (/)c0 3468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-dif 3176  df-in 3180  df-ss 3187  df-nul 3469
This theorem is referenced by:  ss0  3509  un00  3515  ssdisj  3525  pw0  3791  card0  7321  0nnei  14740
  Copyright terms: Public domain W3C validator