ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ss0b Unicode version

Theorem ss0b 3454
Description: Any subset of the empty set is empty. Theorem 5 of [Suppes] p. 23 and its converse. (Contributed by NM, 17-Sep-2003.)
Assertion
Ref Expression
ss0b  |-  ( A 
C_  (/)  <->  A  =  (/) )

Proof of Theorem ss0b
StepHypRef Expression
1 0ss 3453 . . 3  |-  (/)  C_  A
2 eqss 3162 . . 3  |-  ( A  =  (/)  <->  ( A  C_  (/) 
/\  (/)  C_  A )
)
31, 2mpbiran2 936 . 2  |-  ( A  =  (/)  <->  A  C_  (/) )
43bicomi 131 1  |-  ( A 
C_  (/)  <->  A  =  (/) )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1348    C_ wss 3121   (/)c0 3414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-dif 3123  df-in 3127  df-ss 3134  df-nul 3415
This theorem is referenced by:  ss0  3455  un00  3461  ssdisj  3471  pw0  3727  card0  7165  0nnei  12947
  Copyright terms: Public domain W3C validator