ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ss0b Unicode version

Theorem ss0b 3500
Description: Any subset of the empty set is empty. Theorem 5 of [Suppes] p. 23 and its converse. (Contributed by NM, 17-Sep-2003.)
Assertion
Ref Expression
ss0b  |-  ( A 
C_  (/)  <->  A  =  (/) )

Proof of Theorem ss0b
StepHypRef Expression
1 0ss 3499 . . 3  |-  (/)  C_  A
2 eqss 3208 . . 3  |-  ( A  =  (/)  <->  ( A  C_  (/) 
/\  (/)  C_  A )
)
31, 2mpbiran2 944 . 2  |-  ( A  =  (/)  <->  A  C_  (/) )
43bicomi 132 1  |-  ( A 
C_  (/)  <->  A  =  (/) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1373    C_ wss 3166   (/)c0 3460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-dif 3168  df-in 3172  df-ss 3179  df-nul 3461
This theorem is referenced by:  ss0  3501  un00  3507  ssdisj  3517  pw0  3780  card0  7295  0nnei  14625
  Copyright terms: Public domain W3C validator