ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ss0b Unicode version

Theorem ss0b 3490
Description: Any subset of the empty set is empty. Theorem 5 of [Suppes] p. 23 and its converse. (Contributed by NM, 17-Sep-2003.)
Assertion
Ref Expression
ss0b  |-  ( A 
C_  (/)  <->  A  =  (/) )

Proof of Theorem ss0b
StepHypRef Expression
1 0ss 3489 . . 3  |-  (/)  C_  A
2 eqss 3198 . . 3  |-  ( A  =  (/)  <->  ( A  C_  (/) 
/\  (/)  C_  A )
)
31, 2mpbiran2 943 . 2  |-  ( A  =  (/)  <->  A  C_  (/) )
43bicomi 132 1  |-  ( A 
C_  (/)  <->  A  =  (/) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364    C_ wss 3157   (/)c0 3450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-in 3163  df-ss 3170  df-nul 3451
This theorem is referenced by:  ss0  3491  un00  3497  ssdisj  3507  pw0  3769  card0  7255  0nnei  14389
  Copyright terms: Public domain W3C validator