ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ss0b Unicode version

Theorem ss0b 3486
Description: Any subset of the empty set is empty. Theorem 5 of [Suppes] p. 23 and its converse. (Contributed by NM, 17-Sep-2003.)
Assertion
Ref Expression
ss0b  |-  ( A 
C_  (/)  <->  A  =  (/) )

Proof of Theorem ss0b
StepHypRef Expression
1 0ss 3485 . . 3  |-  (/)  C_  A
2 eqss 3194 . . 3  |-  ( A  =  (/)  <->  ( A  C_  (/) 
/\  (/)  C_  A )
)
31, 2mpbiran2 943 . 2  |-  ( A  =  (/)  <->  A  C_  (/) )
43bicomi 132 1  |-  ( A 
C_  (/)  <->  A  =  (/) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364    C_ wss 3153   (/)c0 3446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-dif 3155  df-in 3159  df-ss 3166  df-nul 3447
This theorem is referenced by:  ss0  3487  un00  3493  ssdisj  3503  pw0  3765  card0  7238  0nnei  14298
  Copyright terms: Public domain W3C validator