Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pw1ne0 | GIF version |
Description: The power set of 1o is not zero. (Contributed by Jim Kingdon, 30-Jul-2024.) |
Ref | Expression |
---|---|
pw1ne0 | ⊢ 𝒫 1o ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0elpw 4143 | . 2 ⊢ ∅ ∈ 𝒫 1o | |
2 | 1 | ne0ii 3418 | 1 ⊢ 𝒫 1o ≠ ∅ |
Colors of variables: wff set class |
Syntax hints: ≠ wne 2336 ∅c0 3409 𝒫 cpw 3559 1oc1o 6377 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-nul 4108 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-v 2728 df-dif 3118 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 |
This theorem is referenced by: pw1nel3 7187 sucpw1nel3 7189 |
Copyright terms: Public domain | W3C validator |