ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwexb Unicode version

Theorem pwexb 4565
Description: The Axiom of Power Sets and its converse. A class is a set iff its power class is a set. (Contributed by NM, 11-Nov-2003.)
Assertion
Ref Expression
pwexb  |-  ( A  e.  _V  <->  ~P A  e.  _V )

Proof of Theorem pwexb
StepHypRef Expression
1 uniexb 4564 . 2  |-  ( ~P A  e.  _V  <->  U. ~P A  e.  _V )
2 unipw 4303 . . 3  |-  U. ~P A  =  A
32eleq1i 2295 . 2  |-  ( U. ~P A  e.  _V  <->  A  e.  _V )
41, 3bitr2i 185 1  |-  ( A  e.  _V  <->  ~P A  e.  _V )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    e. wcel 2200   _Vcvv 2799   ~Pcpw 3649   U.cuni 3888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-uni 3889
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator