ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwexb Unicode version

Theorem pwexb 4452
Description: The Axiom of Power Sets and its converse. A class is a set iff its power class is a set. (Contributed by NM, 11-Nov-2003.)
Assertion
Ref Expression
pwexb  |-  ( A  e.  _V  <->  ~P A  e.  _V )

Proof of Theorem pwexb
StepHypRef Expression
1 uniexb 4451 . 2  |-  ( ~P A  e.  _V  <->  U. ~P A  e.  _V )
2 unipw 4195 . . 3  |-  U. ~P A  =  A
32eleq1i 2232 . 2  |-  ( U. ~P A  e.  _V  <->  A  e.  _V )
41, 3bitr2i 184 1  |-  ( A  e.  _V  <->  ~P A  e.  _V )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    e. wcel 2136   _Vcvv 2726   ~Pcpw 3559   U.cuni 3789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-uni 3790
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator