| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pwexb | Unicode version | ||
| Description: The Axiom of Power Sets and its converse. A class is a set iff its power class is a set. (Contributed by NM, 11-Nov-2003.) |
| Ref | Expression |
|---|---|
| pwexb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexb 4538 |
. 2
| |
| 2 | unipw 4279 |
. . 3
| |
| 3 | 2 | eleq1i 2273 |
. 2
|
| 4 | 1, 3 | bitr2i 185 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rex 2492 df-v 2778 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-uni 3865 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |