Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pwexb | Unicode version |
Description: The Axiom of Power Sets and its converse. A class is a set iff its power class is a set. (Contributed by NM, 11-Nov-2003.) |
Ref | Expression |
---|---|
pwexb |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniexb 4427 | . 2 | |
2 | unipw 4172 | . . 3 | |
3 | 2 | eleq1i 2220 | . 2 |
4 | 1, 3 | bitr2i 184 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wcel 2125 cvv 2709 cpw 3539 cuni 3768 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-un 4388 |
This theorem depends on definitions: df-bi 116 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-rex 2438 df-v 2711 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-uni 3769 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |