| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pwexb | GIF version | ||
| Description: The Axiom of Power Sets and its converse. A class is a set iff its power class is a set. (Contributed by NM, 11-Nov-2003.) |
| Ref | Expression |
|---|---|
| pwexb | ⊢ (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexb 4563 | . 2 ⊢ (𝒫 𝐴 ∈ V ↔ ∪ 𝒫 𝐴 ∈ V) | |
| 2 | unipw 4302 | . . 3 ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
| 3 | 2 | eleq1i 2295 | . 2 ⊢ (∪ 𝒫 𝐴 ∈ V ↔ 𝐴 ∈ V) |
| 4 | 1, 3 | bitr2i 185 | 1 ⊢ (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∈ wcel 2200 Vcvv 2799 𝒫 cpw 3649 ∪ cuni 3887 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-uni 3888 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |