| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pwexb | GIF version | ||
| Description: The Axiom of Power Sets and its converse. A class is a set iff its power class is a set. (Contributed by NM, 11-Nov-2003.) |
| Ref | Expression |
|---|---|
| pwexb | ⊢ (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexb 4528 | . 2 ⊢ (𝒫 𝐴 ∈ V ↔ ∪ 𝒫 𝐴 ∈ V) | |
| 2 | unipw 4269 | . . 3 ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
| 3 | 2 | eleq1i 2272 | . 2 ⊢ (∪ 𝒫 𝐴 ∈ V ↔ 𝐴 ∈ V) |
| 4 | 1, 3 | bitr2i 185 | 1 ⊢ (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∈ wcel 2177 Vcvv 2773 𝒫 cpw 3621 ∪ cuni 3856 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-un 4488 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-v 2775 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-uni 3857 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |