ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwexb GIF version

Theorem pwexb 4564
Description: The Axiom of Power Sets and its converse. A class is a set iff its power class is a set. (Contributed by NM, 11-Nov-2003.)
Assertion
Ref Expression
pwexb (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V)

Proof of Theorem pwexb
StepHypRef Expression
1 uniexb 4563 . 2 (𝒫 𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V)
2 unipw 4302 . . 3 𝒫 𝐴 = 𝐴
32eleq1i 2295 . 2 ( 𝒫 𝐴 ∈ V ↔ 𝐴 ∈ V)
41, 3bitr2i 185 1 (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  wb 105  wcel 2200  Vcvv 2799  𝒫 cpw 3649   cuni 3887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-uni 3888
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator