ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwundifss GIF version

Theorem pwundifss 4373
Description: Break up the power class of a union into a union of smaller classes. (Contributed by Jim Kingdon, 30-Sep-2018.)
Assertion
Ref Expression
pwundifss ((𝒫 (𝐴𝐵) ∖ 𝒫 𝐴) ∪ 𝒫 𝐴) ⊆ 𝒫 (𝐴𝐵)

Proof of Theorem pwundifss
StepHypRef Expression
1 undif1ss 3566 . 2 ((𝒫 (𝐴𝐵) ∖ 𝒫 𝐴) ∪ 𝒫 𝐴) ⊆ (𝒫 (𝐴𝐵) ∪ 𝒫 𝐴)
2 pwunss 4371 . . . . 5 (𝒫 𝐴 ∪ 𝒫 𝐵) ⊆ 𝒫 (𝐴𝐵)
3 unss 3378 . . . . 5 ((𝒫 𝐴 ⊆ 𝒫 (𝐴𝐵) ∧ 𝒫 𝐵 ⊆ 𝒫 (𝐴𝐵)) ↔ (𝒫 𝐴 ∪ 𝒫 𝐵) ⊆ 𝒫 (𝐴𝐵))
42, 3mpbir 146 . . . 4 (𝒫 𝐴 ⊆ 𝒫 (𝐴𝐵) ∧ 𝒫 𝐵 ⊆ 𝒫 (𝐴𝐵))
54simpli 111 . . 3 𝒫 𝐴 ⊆ 𝒫 (𝐴𝐵)
6 ssequn2 3377 . . 3 (𝒫 𝐴 ⊆ 𝒫 (𝐴𝐵) ↔ (𝒫 (𝐴𝐵) ∪ 𝒫 𝐴) = 𝒫 (𝐴𝐵))
75, 6mpbi 145 . 2 (𝒫 (𝐴𝐵) ∪ 𝒫 𝐴) = 𝒫 (𝐴𝐵)
81, 7sseqtri 3258 1 ((𝒫 (𝐴𝐵) ∖ 𝒫 𝐴) ∪ 𝒫 𝐴) ⊆ 𝒫 (𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1395  cdif 3194  cun 3195  wss 3197  𝒫 cpw 3649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator