| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pwundifss | GIF version | ||
| Description: Break up the power class of a union into a union of smaller classes. (Contributed by Jim Kingdon, 30-Sep-2018.) |
| Ref | Expression |
|---|---|
| pwundifss | ⊢ ((𝒫 (𝐴 ∪ 𝐵) ∖ 𝒫 𝐴) ∪ 𝒫 𝐴) ⊆ 𝒫 (𝐴 ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | undif1ss 3566 | . 2 ⊢ ((𝒫 (𝐴 ∪ 𝐵) ∖ 𝒫 𝐴) ∪ 𝒫 𝐴) ⊆ (𝒫 (𝐴 ∪ 𝐵) ∪ 𝒫 𝐴) | |
| 2 | pwunss 4371 | . . . . 5 ⊢ (𝒫 𝐴 ∪ 𝒫 𝐵) ⊆ 𝒫 (𝐴 ∪ 𝐵) | |
| 3 | unss 3378 | . . . . 5 ⊢ ((𝒫 𝐴 ⊆ 𝒫 (𝐴 ∪ 𝐵) ∧ 𝒫 𝐵 ⊆ 𝒫 (𝐴 ∪ 𝐵)) ↔ (𝒫 𝐴 ∪ 𝒫 𝐵) ⊆ 𝒫 (𝐴 ∪ 𝐵)) | |
| 4 | 2, 3 | mpbir 146 | . . . 4 ⊢ (𝒫 𝐴 ⊆ 𝒫 (𝐴 ∪ 𝐵) ∧ 𝒫 𝐵 ⊆ 𝒫 (𝐴 ∪ 𝐵)) |
| 5 | 4 | simpli 111 | . . 3 ⊢ 𝒫 𝐴 ⊆ 𝒫 (𝐴 ∪ 𝐵) |
| 6 | ssequn2 3377 | . . 3 ⊢ (𝒫 𝐴 ⊆ 𝒫 (𝐴 ∪ 𝐵) ↔ (𝒫 (𝐴 ∪ 𝐵) ∪ 𝒫 𝐴) = 𝒫 (𝐴 ∪ 𝐵)) | |
| 7 | 5, 6 | mpbi 145 | . 2 ⊢ (𝒫 (𝐴 ∪ 𝐵) ∪ 𝒫 𝐴) = 𝒫 (𝐴 ∪ 𝐵) |
| 8 | 1, 7 | sseqtri 3258 | 1 ⊢ ((𝒫 (𝐴 ∪ 𝐵) ∖ 𝒫 𝐴) ∪ 𝒫 𝐴) ⊆ 𝒫 (𝐴 ∪ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1395 ∖ cdif 3194 ∪ cun 3195 ⊆ wss 3197 𝒫 cpw 3649 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |