Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pwundifss | GIF version |
Description: Break up the power class of a union into a union of smaller classes. (Contributed by Jim Kingdon, 30-Sep-2018.) |
Ref | Expression |
---|---|
pwundifss | ⊢ ((𝒫 (𝐴 ∪ 𝐵) ∖ 𝒫 𝐴) ∪ 𝒫 𝐴) ⊆ 𝒫 (𝐴 ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | undif1ss 3483 | . 2 ⊢ ((𝒫 (𝐴 ∪ 𝐵) ∖ 𝒫 𝐴) ∪ 𝒫 𝐴) ⊆ (𝒫 (𝐴 ∪ 𝐵) ∪ 𝒫 𝐴) | |
2 | pwunss 4261 | . . . . 5 ⊢ (𝒫 𝐴 ∪ 𝒫 𝐵) ⊆ 𝒫 (𝐴 ∪ 𝐵) | |
3 | unss 3296 | . . . . 5 ⊢ ((𝒫 𝐴 ⊆ 𝒫 (𝐴 ∪ 𝐵) ∧ 𝒫 𝐵 ⊆ 𝒫 (𝐴 ∪ 𝐵)) ↔ (𝒫 𝐴 ∪ 𝒫 𝐵) ⊆ 𝒫 (𝐴 ∪ 𝐵)) | |
4 | 2, 3 | mpbir 145 | . . . 4 ⊢ (𝒫 𝐴 ⊆ 𝒫 (𝐴 ∪ 𝐵) ∧ 𝒫 𝐵 ⊆ 𝒫 (𝐴 ∪ 𝐵)) |
5 | 4 | simpli 110 | . . 3 ⊢ 𝒫 𝐴 ⊆ 𝒫 (𝐴 ∪ 𝐵) |
6 | ssequn2 3295 | . . 3 ⊢ (𝒫 𝐴 ⊆ 𝒫 (𝐴 ∪ 𝐵) ↔ (𝒫 (𝐴 ∪ 𝐵) ∪ 𝒫 𝐴) = 𝒫 (𝐴 ∪ 𝐵)) | |
7 | 5, 6 | mpbi 144 | . 2 ⊢ (𝒫 (𝐴 ∪ 𝐵) ∪ 𝒫 𝐴) = 𝒫 (𝐴 ∪ 𝐵) |
8 | 1, 7 | sseqtri 3176 | 1 ⊢ ((𝒫 (𝐴 ∪ 𝐵) ∖ 𝒫 𝐴) ∪ 𝒫 𝐴) ⊆ 𝒫 (𝐴 ∪ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1343 ∖ cdif 3113 ∪ cun 3114 ⊆ wss 3116 𝒫 cpw 3559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |