ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funimass4 Unicode version

Theorem funimass4 5558
Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Raph Levien, 20-Nov-2006.)
Assertion
Ref Expression
funimass4  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( ( F " A )  C_  B  <->  A. x  e.  A  ( F `  x )  e.  B ) )
Distinct variable groups:    x, A    x, B    x, F

Proof of Theorem funimass4
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfss2 3142 . 2  |-  ( ( F " A ) 
C_  B  <->  A. y
( y  e.  ( F " A )  ->  y  e.  B
) )
2 vex 2738 . . . . . . . . 9  |-  y  e. 
_V
32elima 4968 . . . . . . . 8  |-  ( y  e.  ( F " A )  <->  E. x  e.  A  x F
y )
4 eqcom 2177 . . . . . . . . . 10  |-  ( y  =  ( F `  x )  <->  ( F `  x )  =  y )
5 ssel 3147 . . . . . . . . . . . 12  |-  ( A 
C_  dom  F  ->  ( x  e.  A  ->  x  e.  dom  F ) )
6 funbrfvb 5550 . . . . . . . . . . . . 13  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( ( F `  x )  =  y  <-> 
x F y ) )
76ex 115 . . . . . . . . . . . 12  |-  ( Fun 
F  ->  ( x  e.  dom  F  ->  (
( F `  x
)  =  y  <->  x F
y ) ) )
85, 7syl9 72 . . . . . . . . . . 11  |-  ( A 
C_  dom  F  ->  ( Fun  F  ->  (
x  e.  A  -> 
( ( F `  x )  =  y  <-> 
x F y ) ) ) )
98imp31 256 . . . . . . . . . 10  |-  ( ( ( A  C_  dom  F  /\  Fun  F )  /\  x  e.  A
)  ->  ( ( F `  x )  =  y  <->  x F y ) )
104, 9bitrid 192 . . . . . . . . 9  |-  ( ( ( A  C_  dom  F  /\  Fun  F )  /\  x  e.  A
)  ->  ( y  =  ( F `  x )  <->  x F
y ) )
1110rexbidva 2472 . . . . . . . 8  |-  ( ( A  C_  dom  F  /\  Fun  F )  ->  ( E. x  e.  A  y  =  ( F `  x )  <->  E. x  e.  A  x F
y ) )
123, 11bitr4id 199 . . . . . . 7  |-  ( ( A  C_  dom  F  /\  Fun  F )  ->  (
y  e.  ( F
" A )  <->  E. x  e.  A  y  =  ( F `  x ) ) )
1312imbi1d 231 . . . . . 6  |-  ( ( A  C_  dom  F  /\  Fun  F )  ->  (
( y  e.  ( F " A )  ->  y  e.  B
)  <->  ( E. x  e.  A  y  =  ( F `  x )  ->  y  e.  B
) ) )
14 r19.23v 2584 . . . . . 6  |-  ( A. x  e.  A  (
y  =  ( F `
 x )  -> 
y  e.  B )  <-> 
( E. x  e.  A  y  =  ( F `  x )  ->  y  e.  B
) )
1513, 14bitr4di 198 . . . . 5  |-  ( ( A  C_  dom  F  /\  Fun  F )  ->  (
( y  e.  ( F " A )  ->  y  e.  B
)  <->  A. x  e.  A  ( y  =  ( F `  x )  ->  y  e.  B
) ) )
1615albidv 1822 . . . 4  |-  ( ( A  C_  dom  F  /\  Fun  F )  ->  ( A. y ( y  e.  ( F " A
)  ->  y  e.  B )  <->  A. y A. x  e.  A  ( y  =  ( F `  x )  ->  y  e.  B
) ) )
1716ancoms 268 . . 3  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( A. y ( y  e.  ( F
" A )  -> 
y  e.  B )  <->  A. y A. x  e.  A  ( y  =  ( F `  x
)  ->  y  e.  B ) ) )
18 ralcom4 2757 . . . 4  |-  ( A. x  e.  A  A. y ( y  =  ( F `  x
)  ->  y  e.  B )  <->  A. y A. x  e.  A  ( y  =  ( F `  x )  ->  y  e.  B
) )
19 ssel2 3148 . . . . . . . . 9  |-  ( ( A  C_  dom  F  /\  x  e.  A )  ->  x  e.  dom  F
)
2019anim2i 342 . . . . . . . 8  |-  ( ( Fun  F  /\  ( A  C_  dom  F  /\  x  e.  A )
)  ->  ( Fun  F  /\  x  e.  dom  F ) )
21203impb 1199 . . . . . . 7  |-  ( ( Fun  F  /\  A  C_ 
dom  F  /\  x  e.  A )  ->  ( Fun  F  /\  x  e. 
dom  F ) )
22 funfvex 5524 . . . . . . 7  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( F `  x
)  e.  _V )
23 nfv 1526 . . . . . . . 8  |-  F/ y ( F `  x
)  e.  B
24 eleq1 2238 . . . . . . . 8  |-  ( y  =  ( F `  x )  ->  (
y  e.  B  <->  ( F `  x )  e.  B
) )
2523, 24ceqsalg 2763 . . . . . . 7  |-  ( ( F `  x )  e.  _V  ->  ( A. y ( y  =  ( F `  x
)  ->  y  e.  B )  <->  ( F `  x )  e.  B
) )
2621, 22, 253syl 17 . . . . . 6  |-  ( ( Fun  F  /\  A  C_ 
dom  F  /\  x  e.  A )  ->  ( A. y ( y  =  ( F `  x
)  ->  y  e.  B )  <->  ( F `  x )  e.  B
) )
27263expa 1203 . . . . 5  |-  ( ( ( Fun  F  /\  A  C_  dom  F )  /\  x  e.  A
)  ->  ( A. y ( y  =  ( F `  x
)  ->  y  e.  B )  <->  ( F `  x )  e.  B
) )
2827ralbidva 2471 . . . 4  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( A. x  e.  A  A. y ( y  =  ( F `
 x )  -> 
y  e.  B )  <->  A. x  e.  A  ( F `  x )  e.  B ) )
2918, 28bitr3id 194 . . 3  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( A. y A. x  e.  A  (
y  =  ( F `
 x )  -> 
y  e.  B )  <->  A. x  e.  A  ( F `  x )  e.  B ) )
3017, 29bitrd 188 . 2  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( A. y ( y  e.  ( F
" A )  -> 
y  e.  B )  <->  A. x  e.  A  ( F `  x )  e.  B ) )
311, 30bitrid 192 1  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( ( F " A )  C_  B  <->  A. x  e.  A  ( F `  x )  e.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978   A.wal 1351    = wceq 1353    e. wcel 2146   A.wral 2453   E.wrex 2454   _Vcvv 2735    C_ wss 3127   class class class wbr 3998   dom cdm 4620   "cima 4623   Fun wfun 5202   ` cfv 5208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-sbc 2961  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-fv 5216
This theorem is referenced by:  funimass3  5624  funimass5  5625  funconstss  5626  funimassov  6014  phimullem  12191  txcnp  13264  metcnp  13505
  Copyright terms: Public domain W3C validator