| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funimass4 | Unicode version | ||
| Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Raph Levien, 20-Nov-2006.) |
| Ref | Expression |
|---|---|
| funimass4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssalel 3212 |
. 2
| |
| 2 | vex 2802 |
. . . . . . . . 9
| |
| 3 | 2 | elima 5072 |
. . . . . . . 8
|
| 4 | eqcom 2231 |
. . . . . . . . . 10
| |
| 5 | ssel 3218 |
. . . . . . . . . . . 12
| |
| 6 | funbrfvb 5673 |
. . . . . . . . . . . . 13
| |
| 7 | 6 | ex 115 |
. . . . . . . . . . . 12
|
| 8 | 5, 7 | syl9 72 |
. . . . . . . . . . 11
|
| 9 | 8 | imp31 256 |
. . . . . . . . . 10
|
| 10 | 4, 9 | bitrid 192 |
. . . . . . . . 9
|
| 11 | 10 | rexbidva 2527 |
. . . . . . . 8
|
| 12 | 3, 11 | bitr4id 199 |
. . . . . . 7
|
| 13 | 12 | imbi1d 231 |
. . . . . 6
|
| 14 | r19.23v 2640 |
. . . . . 6
| |
| 15 | 13, 14 | bitr4di 198 |
. . . . 5
|
| 16 | 15 | albidv 1870 |
. . . 4
|
| 17 | 16 | ancoms 268 |
. . 3
|
| 18 | ralcom4 2822 |
. . . 4
| |
| 19 | ssel2 3219 |
. . . . . . . . 9
| |
| 20 | 19 | anim2i 342 |
. . . . . . . 8
|
| 21 | 20 | 3impb 1223 |
. . . . . . 7
|
| 22 | funfvex 5643 |
. . . . . . 7
| |
| 23 | nfv 1574 |
. . . . . . . 8
| |
| 24 | eleq1 2292 |
. . . . . . . 8
| |
| 25 | 23, 24 | ceqsalg 2828 |
. . . . . . 7
|
| 26 | 21, 22, 25 | 3syl 17 |
. . . . . 6
|
| 27 | 26 | 3expa 1227 |
. . . . 5
|
| 28 | 27 | ralbidva 2526 |
. . . 4
|
| 29 | 18, 28 | bitr3id 194 |
. . 3
|
| 30 | 17, 29 | bitrd 188 |
. 2
|
| 31 | 1, 30 | bitrid 192 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-fv 5325 |
| This theorem is referenced by: funimass3 5750 funimass5 5751 funconstss 5752 funimassov 6154 phimullem 12742 txcnp 14939 metcnp 15180 plycoeid3 15425 |
| Copyright terms: Public domain | W3C validator |