ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funimass4 Unicode version

Theorem funimass4 5537
Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Raph Levien, 20-Nov-2006.)
Assertion
Ref Expression
funimass4  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( ( F " A )  C_  B  <->  A. x  e.  A  ( F `  x )  e.  B ) )
Distinct variable groups:    x, A    x, B    x, F

Proof of Theorem funimass4
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfss2 3131 . 2  |-  ( ( F " A ) 
C_  B  <->  A. y
( y  e.  ( F " A )  ->  y  e.  B
) )
2 vex 2729 . . . . . . . . 9  |-  y  e. 
_V
32elima 4951 . . . . . . . 8  |-  ( y  e.  ( F " A )  <->  E. x  e.  A  x F
y )
4 eqcom 2167 . . . . . . . . . 10  |-  ( y  =  ( F `  x )  <->  ( F `  x )  =  y )
5 ssel 3136 . . . . . . . . . . . 12  |-  ( A 
C_  dom  F  ->  ( x  e.  A  ->  x  e.  dom  F ) )
6 funbrfvb 5529 . . . . . . . . . . . . 13  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( ( F `  x )  =  y  <-> 
x F y ) )
76ex 114 . . . . . . . . . . . 12  |-  ( Fun 
F  ->  ( x  e.  dom  F  ->  (
( F `  x
)  =  y  <->  x F
y ) ) )
85, 7syl9 72 . . . . . . . . . . 11  |-  ( A 
C_  dom  F  ->  ( Fun  F  ->  (
x  e.  A  -> 
( ( F `  x )  =  y  <-> 
x F y ) ) ) )
98imp31 254 . . . . . . . . . 10  |-  ( ( ( A  C_  dom  F  /\  Fun  F )  /\  x  e.  A
)  ->  ( ( F `  x )  =  y  <->  x F y ) )
104, 9syl5bb 191 . . . . . . . . 9  |-  ( ( ( A  C_  dom  F  /\  Fun  F )  /\  x  e.  A
)  ->  ( y  =  ( F `  x )  <->  x F
y ) )
1110rexbidva 2463 . . . . . . . 8  |-  ( ( A  C_  dom  F  /\  Fun  F )  ->  ( E. x  e.  A  y  =  ( F `  x )  <->  E. x  e.  A  x F
y ) )
123, 11bitr4id 198 . . . . . . 7  |-  ( ( A  C_  dom  F  /\  Fun  F )  ->  (
y  e.  ( F
" A )  <->  E. x  e.  A  y  =  ( F `  x ) ) )
1312imbi1d 230 . . . . . 6  |-  ( ( A  C_  dom  F  /\  Fun  F )  ->  (
( y  e.  ( F " A )  ->  y  e.  B
)  <->  ( E. x  e.  A  y  =  ( F `  x )  ->  y  e.  B
) ) )
14 r19.23v 2575 . . . . . 6  |-  ( A. x  e.  A  (
y  =  ( F `
 x )  -> 
y  e.  B )  <-> 
( E. x  e.  A  y  =  ( F `  x )  ->  y  e.  B
) )
1513, 14bitr4di 197 . . . . 5  |-  ( ( A  C_  dom  F  /\  Fun  F )  ->  (
( y  e.  ( F " A )  ->  y  e.  B
)  <->  A. x  e.  A  ( y  =  ( F `  x )  ->  y  e.  B
) ) )
1615albidv 1812 . . . 4  |-  ( ( A  C_  dom  F  /\  Fun  F )  ->  ( A. y ( y  e.  ( F " A
)  ->  y  e.  B )  <->  A. y A. x  e.  A  ( y  =  ( F `  x )  ->  y  e.  B
) ) )
1716ancoms 266 . . 3  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( A. y ( y  e.  ( F
" A )  -> 
y  e.  B )  <->  A. y A. x  e.  A  ( y  =  ( F `  x
)  ->  y  e.  B ) ) )
18 ralcom4 2748 . . . 4  |-  ( A. x  e.  A  A. y ( y  =  ( F `  x
)  ->  y  e.  B )  <->  A. y A. x  e.  A  ( y  =  ( F `  x )  ->  y  e.  B
) )
19 ssel2 3137 . . . . . . . . 9  |-  ( ( A  C_  dom  F  /\  x  e.  A )  ->  x  e.  dom  F
)
2019anim2i 340 . . . . . . . 8  |-  ( ( Fun  F  /\  ( A  C_  dom  F  /\  x  e.  A )
)  ->  ( Fun  F  /\  x  e.  dom  F ) )
21203impb 1189 . . . . . . 7  |-  ( ( Fun  F  /\  A  C_ 
dom  F  /\  x  e.  A )  ->  ( Fun  F  /\  x  e. 
dom  F ) )
22 funfvex 5503 . . . . . . 7  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( F `  x
)  e.  _V )
23 nfv 1516 . . . . . . . 8  |-  F/ y ( F `  x
)  e.  B
24 eleq1 2229 . . . . . . . 8  |-  ( y  =  ( F `  x )  ->  (
y  e.  B  <->  ( F `  x )  e.  B
) )
2523, 24ceqsalg 2754 . . . . . . 7  |-  ( ( F `  x )  e.  _V  ->  ( A. y ( y  =  ( F `  x
)  ->  y  e.  B )  <->  ( F `  x )  e.  B
) )
2621, 22, 253syl 17 . . . . . 6  |-  ( ( Fun  F  /\  A  C_ 
dom  F  /\  x  e.  A )  ->  ( A. y ( y  =  ( F `  x
)  ->  y  e.  B )  <->  ( F `  x )  e.  B
) )
27263expa 1193 . . . . 5  |-  ( ( ( Fun  F  /\  A  C_  dom  F )  /\  x  e.  A
)  ->  ( A. y ( y  =  ( F `  x
)  ->  y  e.  B )  <->  ( F `  x )  e.  B
) )
2827ralbidva 2462 . . . 4  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( A. x  e.  A  A. y ( y  =  ( F `
 x )  -> 
y  e.  B )  <->  A. x  e.  A  ( F `  x )  e.  B ) )
2918, 28bitr3id 193 . . 3  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( A. y A. x  e.  A  (
y  =  ( F `
 x )  -> 
y  e.  B )  <->  A. x  e.  A  ( F `  x )  e.  B ) )
3017, 29bitrd 187 . 2  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( A. y ( y  e.  ( F
" A )  -> 
y  e.  B )  <->  A. x  e.  A  ( F `  x )  e.  B ) )
311, 30syl5bb 191 1  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( ( F " A )  C_  B  <->  A. x  e.  A  ( F `  x )  e.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968   A.wal 1341    = wceq 1343    e. wcel 2136   A.wral 2444   E.wrex 2445   _Vcvv 2726    C_ wss 3116   class class class wbr 3982   dom cdm 4604   "cima 4607   Fun wfun 5182   ` cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-fv 5196
This theorem is referenced by:  funimass3  5601  funimass5  5602  funconstss  5603  funimassov  5991  phimullem  12157  txcnp  12911  metcnp  13152
  Copyright terms: Public domain W3C validator