| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funimass4 | Unicode version | ||
| Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Raph Levien, 20-Nov-2006.) |
| Ref | Expression |
|---|---|
| funimass4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssalel 3185 |
. 2
| |
| 2 | vex 2776 |
. . . . . . . . 9
| |
| 3 | 2 | elima 5036 |
. . . . . . . 8
|
| 4 | eqcom 2208 |
. . . . . . . . . 10
| |
| 5 | ssel 3191 |
. . . . . . . . . . . 12
| |
| 6 | funbrfvb 5634 |
. . . . . . . . . . . . 13
| |
| 7 | 6 | ex 115 |
. . . . . . . . . . . 12
|
| 8 | 5, 7 | syl9 72 |
. . . . . . . . . . 11
|
| 9 | 8 | imp31 256 |
. . . . . . . . . 10
|
| 10 | 4, 9 | bitrid 192 |
. . . . . . . . 9
|
| 11 | 10 | rexbidva 2504 |
. . . . . . . 8
|
| 12 | 3, 11 | bitr4id 199 |
. . . . . . 7
|
| 13 | 12 | imbi1d 231 |
. . . . . 6
|
| 14 | r19.23v 2616 |
. . . . . 6
| |
| 15 | 13, 14 | bitr4di 198 |
. . . . 5
|
| 16 | 15 | albidv 1848 |
. . . 4
|
| 17 | 16 | ancoms 268 |
. . 3
|
| 18 | ralcom4 2796 |
. . . 4
| |
| 19 | ssel2 3192 |
. . . . . . . . 9
| |
| 20 | 19 | anim2i 342 |
. . . . . . . 8
|
| 21 | 20 | 3impb 1202 |
. . . . . . 7
|
| 22 | funfvex 5606 |
. . . . . . 7
| |
| 23 | nfv 1552 |
. . . . . . . 8
| |
| 24 | eleq1 2269 |
. . . . . . . 8
| |
| 25 | 23, 24 | ceqsalg 2802 |
. . . . . . 7
|
| 26 | 21, 22, 25 | 3syl 17 |
. . . . . 6
|
| 27 | 26 | 3expa 1206 |
. . . . 5
|
| 28 | 27 | ralbidva 2503 |
. . . 4
|
| 29 | 18, 28 | bitr3id 194 |
. . 3
|
| 30 | 17, 29 | bitrd 188 |
. 2
|
| 31 | 1, 30 | bitrid 192 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-fv 5288 |
| This theorem is referenced by: funimass3 5709 funimass5 5710 funconstss 5711 funimassov 6109 phimullem 12622 txcnp 14818 metcnp 15059 plycoeid3 15304 |
| Copyright terms: Public domain | W3C validator |