ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funimass4 Unicode version

Theorem funimass4 5683
Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Raph Levien, 20-Nov-2006.)
Assertion
Ref Expression
funimass4  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( ( F " A )  C_  B  <->  A. x  e.  A  ( F `  x )  e.  B ) )
Distinct variable groups:    x, A    x, B    x, F

Proof of Theorem funimass4
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ssalel 3212 . 2  |-  ( ( F " A ) 
C_  B  <->  A. y
( y  e.  ( F " A )  ->  y  e.  B
) )
2 vex 2802 . . . . . . . . 9  |-  y  e. 
_V
32elima 5072 . . . . . . . 8  |-  ( y  e.  ( F " A )  <->  E. x  e.  A  x F
y )
4 eqcom 2231 . . . . . . . . . 10  |-  ( y  =  ( F `  x )  <->  ( F `  x )  =  y )
5 ssel 3218 . . . . . . . . . . . 12  |-  ( A 
C_  dom  F  ->  ( x  e.  A  ->  x  e.  dom  F ) )
6 funbrfvb 5673 . . . . . . . . . . . . 13  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( ( F `  x )  =  y  <-> 
x F y ) )
76ex 115 . . . . . . . . . . . 12  |-  ( Fun 
F  ->  ( x  e.  dom  F  ->  (
( F `  x
)  =  y  <->  x F
y ) ) )
85, 7syl9 72 . . . . . . . . . . 11  |-  ( A 
C_  dom  F  ->  ( Fun  F  ->  (
x  e.  A  -> 
( ( F `  x )  =  y  <-> 
x F y ) ) ) )
98imp31 256 . . . . . . . . . 10  |-  ( ( ( A  C_  dom  F  /\  Fun  F )  /\  x  e.  A
)  ->  ( ( F `  x )  =  y  <->  x F y ) )
104, 9bitrid 192 . . . . . . . . 9  |-  ( ( ( A  C_  dom  F  /\  Fun  F )  /\  x  e.  A
)  ->  ( y  =  ( F `  x )  <->  x F
y ) )
1110rexbidva 2527 . . . . . . . 8  |-  ( ( A  C_  dom  F  /\  Fun  F )  ->  ( E. x  e.  A  y  =  ( F `  x )  <->  E. x  e.  A  x F
y ) )
123, 11bitr4id 199 . . . . . . 7  |-  ( ( A  C_  dom  F  /\  Fun  F )  ->  (
y  e.  ( F
" A )  <->  E. x  e.  A  y  =  ( F `  x ) ) )
1312imbi1d 231 . . . . . 6  |-  ( ( A  C_  dom  F  /\  Fun  F )  ->  (
( y  e.  ( F " A )  ->  y  e.  B
)  <->  ( E. x  e.  A  y  =  ( F `  x )  ->  y  e.  B
) ) )
14 r19.23v 2640 . . . . . 6  |-  ( A. x  e.  A  (
y  =  ( F `
 x )  -> 
y  e.  B )  <-> 
( E. x  e.  A  y  =  ( F `  x )  ->  y  e.  B
) )
1513, 14bitr4di 198 . . . . 5  |-  ( ( A  C_  dom  F  /\  Fun  F )  ->  (
( y  e.  ( F " A )  ->  y  e.  B
)  <->  A. x  e.  A  ( y  =  ( F `  x )  ->  y  e.  B
) ) )
1615albidv 1870 . . . 4  |-  ( ( A  C_  dom  F  /\  Fun  F )  ->  ( A. y ( y  e.  ( F " A
)  ->  y  e.  B )  <->  A. y A. x  e.  A  ( y  =  ( F `  x )  ->  y  e.  B
) ) )
1716ancoms 268 . . 3  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( A. y ( y  e.  ( F
" A )  -> 
y  e.  B )  <->  A. y A. x  e.  A  ( y  =  ( F `  x
)  ->  y  e.  B ) ) )
18 ralcom4 2822 . . . 4  |-  ( A. x  e.  A  A. y ( y  =  ( F `  x
)  ->  y  e.  B )  <->  A. y A. x  e.  A  ( y  =  ( F `  x )  ->  y  e.  B
) )
19 ssel2 3219 . . . . . . . . 9  |-  ( ( A  C_  dom  F  /\  x  e.  A )  ->  x  e.  dom  F
)
2019anim2i 342 . . . . . . . 8  |-  ( ( Fun  F  /\  ( A  C_  dom  F  /\  x  e.  A )
)  ->  ( Fun  F  /\  x  e.  dom  F ) )
21203impb 1223 . . . . . . 7  |-  ( ( Fun  F  /\  A  C_ 
dom  F  /\  x  e.  A )  ->  ( Fun  F  /\  x  e. 
dom  F ) )
22 funfvex 5643 . . . . . . 7  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( F `  x
)  e.  _V )
23 nfv 1574 . . . . . . . 8  |-  F/ y ( F `  x
)  e.  B
24 eleq1 2292 . . . . . . . 8  |-  ( y  =  ( F `  x )  ->  (
y  e.  B  <->  ( F `  x )  e.  B
) )
2523, 24ceqsalg 2828 . . . . . . 7  |-  ( ( F `  x )  e.  _V  ->  ( A. y ( y  =  ( F `  x
)  ->  y  e.  B )  <->  ( F `  x )  e.  B
) )
2621, 22, 253syl 17 . . . . . 6  |-  ( ( Fun  F  /\  A  C_ 
dom  F  /\  x  e.  A )  ->  ( A. y ( y  =  ( F `  x
)  ->  y  e.  B )  <->  ( F `  x )  e.  B
) )
27263expa 1227 . . . . 5  |-  ( ( ( Fun  F  /\  A  C_  dom  F )  /\  x  e.  A
)  ->  ( A. y ( y  =  ( F `  x
)  ->  y  e.  B )  <->  ( F `  x )  e.  B
) )
2827ralbidva 2526 . . . 4  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( A. x  e.  A  A. y ( y  =  ( F `
 x )  -> 
y  e.  B )  <->  A. x  e.  A  ( F `  x )  e.  B ) )
2918, 28bitr3id 194 . . 3  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( A. y A. x  e.  A  (
y  =  ( F `
 x )  -> 
y  e.  B )  <->  A. x  e.  A  ( F `  x )  e.  B ) )
3017, 29bitrd 188 . 2  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( A. y ( y  e.  ( F
" A )  -> 
y  e.  B )  <->  A. x  e.  A  ( F `  x )  e.  B ) )
311, 30bitrid 192 1  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( ( F " A )  C_  B  <->  A. x  e.  A  ( F `  x )  e.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002   A.wal 1393    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509   _Vcvv 2799    C_ wss 3197   class class class wbr 4082   dom cdm 4718   "cima 4721   Fun wfun 5311   ` cfv 5317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325
This theorem is referenced by:  funimass3  5750  funimass5  5751  funconstss  5752  funimassov  6154  phimullem  12742  txcnp  14939  metcnp  15180  plycoeid3  15425
  Copyright terms: Public domain W3C validator