| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funimass4 | Unicode version | ||
| Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Raph Levien, 20-Nov-2006.) |
| Ref | Expression |
|---|---|
| funimass4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssalel 3180 |
. 2
| |
| 2 | vex 2774 |
. . . . . . . . 9
| |
| 3 | 2 | elima 5026 |
. . . . . . . 8
|
| 4 | eqcom 2206 |
. . . . . . . . . 10
| |
| 5 | ssel 3186 |
. . . . . . . . . . . 12
| |
| 6 | funbrfvb 5620 |
. . . . . . . . . . . . 13
| |
| 7 | 6 | ex 115 |
. . . . . . . . . . . 12
|
| 8 | 5, 7 | syl9 72 |
. . . . . . . . . . 11
|
| 9 | 8 | imp31 256 |
. . . . . . . . . 10
|
| 10 | 4, 9 | bitrid 192 |
. . . . . . . . 9
|
| 11 | 10 | rexbidva 2502 |
. . . . . . . 8
|
| 12 | 3, 11 | bitr4id 199 |
. . . . . . 7
|
| 13 | 12 | imbi1d 231 |
. . . . . 6
|
| 14 | r19.23v 2614 |
. . . . . 6
| |
| 15 | 13, 14 | bitr4di 198 |
. . . . 5
|
| 16 | 15 | albidv 1846 |
. . . 4
|
| 17 | 16 | ancoms 268 |
. . 3
|
| 18 | ralcom4 2793 |
. . . 4
| |
| 19 | ssel2 3187 |
. . . . . . . . 9
| |
| 20 | 19 | anim2i 342 |
. . . . . . . 8
|
| 21 | 20 | 3impb 1201 |
. . . . . . 7
|
| 22 | funfvex 5592 |
. . . . . . 7
| |
| 23 | nfv 1550 |
. . . . . . . 8
| |
| 24 | eleq1 2267 |
. . . . . . . 8
| |
| 25 | 23, 24 | ceqsalg 2799 |
. . . . . . 7
|
| 26 | 21, 22, 25 | 3syl 17 |
. . . . . 6
|
| 27 | 26 | 3expa 1205 |
. . . . 5
|
| 28 | 27 | ralbidva 2501 |
. . . 4
|
| 29 | 18, 28 | bitr3id 194 |
. . 3
|
| 30 | 17, 29 | bitrd 188 |
. 2
|
| 31 | 1, 30 | bitrid 192 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-fv 5278 |
| This theorem is referenced by: funimass3 5695 funimass5 5696 funconstss 5697 funimassov 6095 phimullem 12489 txcnp 14685 metcnp 14926 plycoeid3 15171 |
| Copyright terms: Public domain | W3C validator |