| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funimass4 | Unicode version | ||
| Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Raph Levien, 20-Nov-2006.) |
| Ref | Expression |
|---|---|
| funimass4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss2 3172 |
. 2
| |
| 2 | vex 2766 |
. . . . . . . . 9
| |
| 3 | 2 | elima 5014 |
. . . . . . . 8
|
| 4 | eqcom 2198 |
. . . . . . . . . 10
| |
| 5 | ssel 3177 |
. . . . . . . . . . . 12
| |
| 6 | funbrfvb 5603 |
. . . . . . . . . . . . 13
| |
| 7 | 6 | ex 115 |
. . . . . . . . . . . 12
|
| 8 | 5, 7 | syl9 72 |
. . . . . . . . . . 11
|
| 9 | 8 | imp31 256 |
. . . . . . . . . 10
|
| 10 | 4, 9 | bitrid 192 |
. . . . . . . . 9
|
| 11 | 10 | rexbidva 2494 |
. . . . . . . 8
|
| 12 | 3, 11 | bitr4id 199 |
. . . . . . 7
|
| 13 | 12 | imbi1d 231 |
. . . . . 6
|
| 14 | r19.23v 2606 |
. . . . . 6
| |
| 15 | 13, 14 | bitr4di 198 |
. . . . 5
|
| 16 | 15 | albidv 1838 |
. . . 4
|
| 17 | 16 | ancoms 268 |
. . 3
|
| 18 | ralcom4 2785 |
. . . 4
| |
| 19 | ssel2 3178 |
. . . . . . . . 9
| |
| 20 | 19 | anim2i 342 |
. . . . . . . 8
|
| 21 | 20 | 3impb 1201 |
. . . . . . 7
|
| 22 | funfvex 5575 |
. . . . . . 7
| |
| 23 | nfv 1542 |
. . . . . . . 8
| |
| 24 | eleq1 2259 |
. . . . . . . 8
| |
| 25 | 23, 24 | ceqsalg 2791 |
. . . . . . 7
|
| 26 | 21, 22, 25 | 3syl 17 |
. . . . . 6
|
| 27 | 26 | 3expa 1205 |
. . . . 5
|
| 28 | 27 | ralbidva 2493 |
. . . 4
|
| 29 | 18, 28 | bitr3id 194 |
. . 3
|
| 30 | 17, 29 | bitrd 188 |
. 2
|
| 31 | 1, 30 | bitrid 192 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 |
| This theorem is referenced by: funimass3 5678 funimass5 5679 funconstss 5680 funimassov 6073 phimullem 12393 txcnp 14507 metcnp 14748 plycoeid3 14993 |
| Copyright terms: Public domain | W3C validator |