ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funimass4 Unicode version

Theorem funimass4 5590
Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Raph Levien, 20-Nov-2006.)
Assertion
Ref Expression
funimass4  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( ( F " A )  C_  B  <->  A. x  e.  A  ( F `  x )  e.  B ) )
Distinct variable groups:    x, A    x, B    x, F

Proof of Theorem funimass4
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfss2 3159 . 2  |-  ( ( F " A ) 
C_  B  <->  A. y
( y  e.  ( F " A )  ->  y  e.  B
) )
2 vex 2755 . . . . . . . . 9  |-  y  e. 
_V
32elima 4996 . . . . . . . 8  |-  ( y  e.  ( F " A )  <->  E. x  e.  A  x F
y )
4 eqcom 2191 . . . . . . . . . 10  |-  ( y  =  ( F `  x )  <->  ( F `  x )  =  y )
5 ssel 3164 . . . . . . . . . . . 12  |-  ( A 
C_  dom  F  ->  ( x  e.  A  ->  x  e.  dom  F ) )
6 funbrfvb 5582 . . . . . . . . . . . . 13  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( ( F `  x )  =  y  <-> 
x F y ) )
76ex 115 . . . . . . . . . . . 12  |-  ( Fun 
F  ->  ( x  e.  dom  F  ->  (
( F `  x
)  =  y  <->  x F
y ) ) )
85, 7syl9 72 . . . . . . . . . . 11  |-  ( A 
C_  dom  F  ->  ( Fun  F  ->  (
x  e.  A  -> 
( ( F `  x )  =  y  <-> 
x F y ) ) ) )
98imp31 256 . . . . . . . . . 10  |-  ( ( ( A  C_  dom  F  /\  Fun  F )  /\  x  e.  A
)  ->  ( ( F `  x )  =  y  <->  x F y ) )
104, 9bitrid 192 . . . . . . . . 9  |-  ( ( ( A  C_  dom  F  /\  Fun  F )  /\  x  e.  A
)  ->  ( y  =  ( F `  x )  <->  x F
y ) )
1110rexbidva 2487 . . . . . . . 8  |-  ( ( A  C_  dom  F  /\  Fun  F )  ->  ( E. x  e.  A  y  =  ( F `  x )  <->  E. x  e.  A  x F
y ) )
123, 11bitr4id 199 . . . . . . 7  |-  ( ( A  C_  dom  F  /\  Fun  F )  ->  (
y  e.  ( F
" A )  <->  E. x  e.  A  y  =  ( F `  x ) ) )
1312imbi1d 231 . . . . . 6  |-  ( ( A  C_  dom  F  /\  Fun  F )  ->  (
( y  e.  ( F " A )  ->  y  e.  B
)  <->  ( E. x  e.  A  y  =  ( F `  x )  ->  y  e.  B
) ) )
14 r19.23v 2599 . . . . . 6  |-  ( A. x  e.  A  (
y  =  ( F `
 x )  -> 
y  e.  B )  <-> 
( E. x  e.  A  y  =  ( F `  x )  ->  y  e.  B
) )
1513, 14bitr4di 198 . . . . 5  |-  ( ( A  C_  dom  F  /\  Fun  F )  ->  (
( y  e.  ( F " A )  ->  y  e.  B
)  <->  A. x  e.  A  ( y  =  ( F `  x )  ->  y  e.  B
) ) )
1615albidv 1835 . . . 4  |-  ( ( A  C_  dom  F  /\  Fun  F )  ->  ( A. y ( y  e.  ( F " A
)  ->  y  e.  B )  <->  A. y A. x  e.  A  ( y  =  ( F `  x )  ->  y  e.  B
) ) )
1716ancoms 268 . . 3  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( A. y ( y  e.  ( F
" A )  -> 
y  e.  B )  <->  A. y A. x  e.  A  ( y  =  ( F `  x
)  ->  y  e.  B ) ) )
18 ralcom4 2774 . . . 4  |-  ( A. x  e.  A  A. y ( y  =  ( F `  x
)  ->  y  e.  B )  <->  A. y A. x  e.  A  ( y  =  ( F `  x )  ->  y  e.  B
) )
19 ssel2 3165 . . . . . . . . 9  |-  ( ( A  C_  dom  F  /\  x  e.  A )  ->  x  e.  dom  F
)
2019anim2i 342 . . . . . . . 8  |-  ( ( Fun  F  /\  ( A  C_  dom  F  /\  x  e.  A )
)  ->  ( Fun  F  /\  x  e.  dom  F ) )
21203impb 1201 . . . . . . 7  |-  ( ( Fun  F  /\  A  C_ 
dom  F  /\  x  e.  A )  ->  ( Fun  F  /\  x  e. 
dom  F ) )
22 funfvex 5554 . . . . . . 7  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( F `  x
)  e.  _V )
23 nfv 1539 . . . . . . . 8  |-  F/ y ( F `  x
)  e.  B
24 eleq1 2252 . . . . . . . 8  |-  ( y  =  ( F `  x )  ->  (
y  e.  B  <->  ( F `  x )  e.  B
) )
2523, 24ceqsalg 2780 . . . . . . 7  |-  ( ( F `  x )  e.  _V  ->  ( A. y ( y  =  ( F `  x
)  ->  y  e.  B )  <->  ( F `  x )  e.  B
) )
2621, 22, 253syl 17 . . . . . 6  |-  ( ( Fun  F  /\  A  C_ 
dom  F  /\  x  e.  A )  ->  ( A. y ( y  =  ( F `  x
)  ->  y  e.  B )  <->  ( F `  x )  e.  B
) )
27263expa 1205 . . . . 5  |-  ( ( ( Fun  F  /\  A  C_  dom  F )  /\  x  e.  A
)  ->  ( A. y ( y  =  ( F `  x
)  ->  y  e.  B )  <->  ( F `  x )  e.  B
) )
2827ralbidva 2486 . . . 4  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( A. x  e.  A  A. y ( y  =  ( F `
 x )  -> 
y  e.  B )  <->  A. x  e.  A  ( F `  x )  e.  B ) )
2918, 28bitr3id 194 . . 3  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( A. y A. x  e.  A  (
y  =  ( F `
 x )  -> 
y  e.  B )  <->  A. x  e.  A  ( F `  x )  e.  B ) )
3017, 29bitrd 188 . 2  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( A. y ( y  e.  ( F
" A )  -> 
y  e.  B )  <->  A. x  e.  A  ( F `  x )  e.  B ) )
311, 30bitrid 192 1  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( ( F " A )  C_  B  <->  A. x  e.  A  ( F `  x )  e.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980   A.wal 1362    = wceq 1364    e. wcel 2160   A.wral 2468   E.wrex 2469   _Vcvv 2752    C_ wss 3144   class class class wbr 4021   dom cdm 4647   "cima 4650   Fun wfun 5232   ` cfv 5238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4139  ax-pow 4195  ax-pr 4230
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-sbc 2978  df-un 3148  df-in 3150  df-ss 3157  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-br 4022  df-opab 4083  df-id 4314  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-ima 4660  df-iota 5199  df-fun 5240  df-fn 5241  df-fv 5246
This theorem is referenced by:  funimass3  5656  funimass5  5657  funconstss  5658  funimassov  6050  phimullem  12268  txcnp  14256  metcnp  14497
  Copyright terms: Public domain W3C validator