ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funimass4 Unicode version

Theorem funimass4 5320
Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Raph Levien, 20-Nov-2006.)
Assertion
Ref Expression
funimass4  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( ( F " A )  C_  B  <->  A. x  e.  A  ( F `  x )  e.  B ) )
Distinct variable groups:    x, A    x, B    x, F

Proof of Theorem funimass4
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfss2 3003 . 2  |-  ( ( F " A ) 
C_  B  <->  A. y
( y  e.  ( F " A )  ->  y  e.  B
) )
2 eqcom 2087 . . . . . . . . . 10  |-  ( y  =  ( F `  x )  <->  ( F `  x )  =  y )
3 ssel 3008 . . . . . . . . . . . 12  |-  ( A 
C_  dom  F  ->  ( x  e.  A  ->  x  e.  dom  F ) )
4 funbrfvb 5312 . . . . . . . . . . . . 13  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( ( F `  x )  =  y  <-> 
x F y ) )
54ex 113 . . . . . . . . . . . 12  |-  ( Fun 
F  ->  ( x  e.  dom  F  ->  (
( F `  x
)  =  y  <->  x F
y ) ) )
63, 5syl9 71 . . . . . . . . . . 11  |-  ( A 
C_  dom  F  ->  ( Fun  F  ->  (
x  e.  A  -> 
( ( F `  x )  =  y  <-> 
x F y ) ) ) )
76imp31 252 . . . . . . . . . 10  |-  ( ( ( A  C_  dom  F  /\  Fun  F )  /\  x  e.  A
)  ->  ( ( F `  x )  =  y  <->  x F y ) )
82, 7syl5bb 190 . . . . . . . . 9  |-  ( ( ( A  C_  dom  F  /\  Fun  F )  /\  x  e.  A
)  ->  ( y  =  ( F `  x )  <->  x F
y ) )
98rexbidva 2373 . . . . . . . 8  |-  ( ( A  C_  dom  F  /\  Fun  F )  ->  ( E. x  e.  A  y  =  ( F `  x )  <->  E. x  e.  A  x F
y ) )
10 vex 2618 . . . . . . . . 9  |-  y  e. 
_V
1110elima 4748 . . . . . . . 8  |-  ( y  e.  ( F " A )  <->  E. x  e.  A  x F
y )
129, 11syl6rbbr 197 . . . . . . 7  |-  ( ( A  C_  dom  F  /\  Fun  F )  ->  (
y  e.  ( F
" A )  <->  E. x  e.  A  y  =  ( F `  x ) ) )
1312imbi1d 229 . . . . . 6  |-  ( ( A  C_  dom  F  /\  Fun  F )  ->  (
( y  e.  ( F " A )  ->  y  e.  B
)  <->  ( E. x  e.  A  y  =  ( F `  x )  ->  y  e.  B
) ) )
14 r19.23v 2477 . . . . . 6  |-  ( A. x  e.  A  (
y  =  ( F `
 x )  -> 
y  e.  B )  <-> 
( E. x  e.  A  y  =  ( F `  x )  ->  y  e.  B
) )
1513, 14syl6bbr 196 . . . . 5  |-  ( ( A  C_  dom  F  /\  Fun  F )  ->  (
( y  e.  ( F " A )  ->  y  e.  B
)  <->  A. x  e.  A  ( y  =  ( F `  x )  ->  y  e.  B
) ) )
1615albidv 1749 . . . 4  |-  ( ( A  C_  dom  F  /\  Fun  F )  ->  ( A. y ( y  e.  ( F " A
)  ->  y  e.  B )  <->  A. y A. x  e.  A  ( y  =  ( F `  x )  ->  y  e.  B
) ) )
1716ancoms 264 . . 3  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( A. y ( y  e.  ( F
" A )  -> 
y  e.  B )  <->  A. y A. x  e.  A  ( y  =  ( F `  x
)  ->  y  e.  B ) ) )
18 ralcom4 2635 . . . 4  |-  ( A. x  e.  A  A. y ( y  =  ( F `  x
)  ->  y  e.  B )  <->  A. y A. x  e.  A  ( y  =  ( F `  x )  ->  y  e.  B
) )
19 ssel2 3009 . . . . . . . . 9  |-  ( ( A  C_  dom  F  /\  x  e.  A )  ->  x  e.  dom  F
)
2019anim2i 334 . . . . . . . 8  |-  ( ( Fun  F  /\  ( A  C_  dom  F  /\  x  e.  A )
)  ->  ( Fun  F  /\  x  e.  dom  F ) )
21203impb 1137 . . . . . . 7  |-  ( ( Fun  F  /\  A  C_ 
dom  F  /\  x  e.  A )  ->  ( Fun  F  /\  x  e. 
dom  F ) )
22 funfvex 5287 . . . . . . 7  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( F `  x
)  e.  _V )
23 nfv 1464 . . . . . . . 8  |-  F/ y ( F `  x
)  e.  B
24 eleq1 2147 . . . . . . . 8  |-  ( y  =  ( F `  x )  ->  (
y  e.  B  <->  ( F `  x )  e.  B
) )
2523, 24ceqsalg 2641 . . . . . . 7  |-  ( ( F `  x )  e.  _V  ->  ( A. y ( y  =  ( F `  x
)  ->  y  e.  B )  <->  ( F `  x )  e.  B
) )
2621, 22, 253syl 17 . . . . . 6  |-  ( ( Fun  F  /\  A  C_ 
dom  F  /\  x  e.  A )  ->  ( A. y ( y  =  ( F `  x
)  ->  y  e.  B )  <->  ( F `  x )  e.  B
) )
27263expa 1141 . . . . 5  |-  ( ( ( Fun  F  /\  A  C_  dom  F )  /\  x  e.  A
)  ->  ( A. y ( y  =  ( F `  x
)  ->  y  e.  B )  <->  ( F `  x )  e.  B
) )
2827ralbidva 2372 . . . 4  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( A. x  e.  A  A. y ( y  =  ( F `
 x )  -> 
y  e.  B )  <->  A. x  e.  A  ( F `  x )  e.  B ) )
2918, 28syl5bbr 192 . . 3  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( A. y A. x  e.  A  (
y  =  ( F `
 x )  -> 
y  e.  B )  <->  A. x  e.  A  ( F `  x )  e.  B ) )
3017, 29bitrd 186 . 2  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( A. y ( y  e.  ( F
" A )  -> 
y  e.  B )  <->  A. x  e.  A  ( F `  x )  e.  B ) )
311, 30syl5bb 190 1  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( ( F " A )  C_  B  <->  A. x  e.  A  ( F `  x )  e.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 922   A.wal 1285    = wceq 1287    e. wcel 1436   A.wral 2355   E.wrex 2356   _Vcvv 2615    C_ wss 2988   class class class wbr 3822   dom cdm 4413   "cima 4416   Fun wfun 4977   ` cfv 4983
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3934  ax-pow 3986  ax-pr 4012
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ral 2360  df-rex 2361  df-v 2617  df-sbc 2830  df-un 2992  df-in 2994  df-ss 3001  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3639  df-br 3823  df-opab 3877  df-id 4096  df-xp 4419  df-rel 4420  df-cnv 4421  df-co 4422  df-dm 4423  df-rn 4424  df-res 4425  df-ima 4426  df-iota 4948  df-fun 4985  df-fn 4986  df-fv 4991
This theorem is referenced by:  funimass3  5380  funimass5  5381  funconstss  5382  funimassov  5753  phimullem  11107
  Copyright terms: Public domain W3C validator