ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralxfr2d Unicode version

Theorem ralxfr2d 4458
Description: Transfer universal quantification from a variable  x to another variable  y contained in expression  A. (Contributed by Mario Carneiro, 20-Aug-2014.)
Hypotheses
Ref Expression
ralxfr2d.1  |-  ( (
ph  /\  y  e.  C )  ->  A  e.  V )
ralxfr2d.2  |-  ( ph  ->  ( x  e.  B  <->  E. y  e.  C  x  =  A ) )
ralxfr2d.3  |-  ( (
ph  /\  x  =  A )  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
ralxfr2d  |-  ( ph  ->  ( A. x  e.  B  ps  <->  A. y  e.  C  ch )
)
Distinct variable groups:    x, A    x, y, B    x, C    ch, x    ph, x, y    ps, y
Allowed substitution hints:    ps( x)    ch( y)    A( y)    C( y)    V( x, y)

Proof of Theorem ralxfr2d
StepHypRef Expression
1 ralxfr2d.1 . . . 4  |-  ( (
ph  /\  y  e.  C )  ->  A  e.  V )
2 elisset 2749 . . . 4  |-  ( A  e.  V  ->  E. x  x  =  A )
31, 2syl 14 . . 3  |-  ( (
ph  /\  y  e.  C )  ->  E. x  x  =  A )
4 ralxfr2d.2 . . . . . . . 8  |-  ( ph  ->  ( x  e.  B  <->  E. y  e.  C  x  =  A ) )
54biimprd 158 . . . . . . 7  |-  ( ph  ->  ( E. y  e.  C  x  =  A  ->  x  e.  B
) )
6 r19.23v 2584 . . . . . . 7  |-  ( A. y  e.  C  (
x  =  A  ->  x  e.  B )  <->  ( E. y  e.  C  x  =  A  ->  x  e.  B ) )
75, 6sylibr 134 . . . . . 6  |-  ( ph  ->  A. y  e.  C  ( x  =  A  ->  x  e.  B ) )
87r19.21bi 2563 . . . . 5  |-  ( (
ph  /\  y  e.  C )  ->  (
x  =  A  ->  x  e.  B )
)
9 eleq1 2238 . . . . 5  |-  ( x  =  A  ->  (
x  e.  B  <->  A  e.  B ) )
108, 9mpbidi 151 . . . 4  |-  ( (
ph  /\  y  e.  C )  ->  (
x  =  A  ->  A  e.  B )
)
1110exlimdv 1817 . . 3  |-  ( (
ph  /\  y  e.  C )  ->  ( E. x  x  =  A  ->  A  e.  B
) )
123, 11mpd 13 . 2  |-  ( (
ph  /\  y  e.  C )  ->  A  e.  B )
134biimpa 296 . 2  |-  ( (
ph  /\  x  e.  B )  ->  E. y  e.  C  x  =  A )
14 ralxfr2d.3 . 2  |-  ( (
ph  /\  x  =  A )  ->  ( ps 
<->  ch ) )
1512, 13, 14ralxfrd 4456 1  |-  ( ph  ->  ( A. x  e.  B  ps  <->  A. y  e.  C  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353   E.wex 1490    e. wcel 2146   A.wral 2453   E.wrex 2454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737
This theorem is referenced by:  ralrn  5646  ralima  5747  cnrest2  13305  cnptoprest2  13309
  Copyright terms: Public domain W3C validator