| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssrel2 | Unicode version | ||
| Description: A subclass relationship depends only on a relation's ordered pairs. This version of ssrel 4751 is restricted to the relation's domain. (Contributed by Thierry Arnoux, 25-Jan-2018.) |
| Ref | Expression |
|---|---|
| ssrel2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3177 |
. . . 4
| |
| 2 | 1 | a1d 22 |
. . 3
|
| 3 | 2 | ralrimivv 2578 |
. 2
|
| 4 | eleq1 2259 |
. . . . . . . . . . . 12
| |
| 5 | eleq1 2259 |
. . . . . . . . . . . 12
| |
| 6 | 4, 5 | imbi12d 234 |
. . . . . . . . . . 11
|
| 7 | 6 | biimprcd 160 |
. . . . . . . . . 10
|
| 8 | 7 | ralimi 2560 |
. . . . . . . . 9
|
| 9 | 8 | ralimi 2560 |
. . . . . . . 8
|
| 10 | r19.23v 2606 |
. . . . . . . . . 10
| |
| 11 | 10 | ralbii 2503 |
. . . . . . . . 9
|
| 12 | r19.23v 2606 |
. . . . . . . . 9
| |
| 13 | 11, 12 | bitri 184 |
. . . . . . . 8
|
| 14 | 9, 13 | sylib 122 |
. . . . . . 7
|
| 15 | 14 | com23 78 |
. . . . . 6
|
| 16 | 15 | a2d 26 |
. . . . 5
|
| 17 | 16 | alimdv 1893 |
. . . 4
|
| 18 | dfss2 3172 |
. . . . 5
| |
| 19 | elxp2 4681 |
. . . . . . 7
| |
| 20 | 19 | imbi2i 226 |
. . . . . 6
|
| 21 | 20 | albii 1484 |
. . . . 5
|
| 22 | 18, 21 | bitri 184 |
. . . 4
|
| 23 | dfss2 3172 |
. . . 4
| |
| 24 | 17, 22, 23 | 3imtr4g 205 |
. . 3
|
| 25 | 24 | com12 30 |
. 2
|
| 26 | 3, 25 | impbid2 143 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-opab 4095 df-xp 4669 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |