Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssrel2 | Unicode version |
Description: A subclass relationship depends only on a relation's ordered pairs. This version of ssrel 4699 is restricted to the relation's domain. (Contributed by Thierry Arnoux, 25-Jan-2018.) |
Ref | Expression |
---|---|
ssrel2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3141 | . . . 4 | |
2 | 1 | a1d 22 | . . 3 |
3 | 2 | ralrimivv 2551 | . 2 |
4 | eleq1 2233 | . . . . . . . . . . . 12 | |
5 | eleq1 2233 | . . . . . . . . . . . 12 | |
6 | 4, 5 | imbi12d 233 | . . . . . . . . . . 11 |
7 | 6 | biimprcd 159 | . . . . . . . . . 10 |
8 | 7 | ralimi 2533 | . . . . . . . . 9 |
9 | 8 | ralimi 2533 | . . . . . . . 8 |
10 | r19.23v 2579 | . . . . . . . . . 10 | |
11 | 10 | ralbii 2476 | . . . . . . . . 9 |
12 | r19.23v 2579 | . . . . . . . . 9 | |
13 | 11, 12 | bitri 183 | . . . . . . . 8 |
14 | 9, 13 | sylib 121 | . . . . . . 7 |
15 | 14 | com23 78 | . . . . . 6 |
16 | 15 | a2d 26 | . . . . 5 |
17 | 16 | alimdv 1872 | . . . 4 |
18 | dfss2 3136 | . . . . 5 | |
19 | elxp2 4629 | . . . . . . 7 | |
20 | 19 | imbi2i 225 | . . . . . 6 |
21 | 20 | albii 1463 | . . . . 5 |
22 | 18, 21 | bitri 183 | . . . 4 |
23 | dfss2 3136 | . . . 4 | |
24 | 17, 22, 23 | 3imtr4g 204 | . . 3 |
25 | 24 | com12 30 | . 2 |
26 | 3, 25 | impbid2 142 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1346 wceq 1348 wcel 2141 wral 2448 wrex 2449 wss 3121 cop 3586 cxp 4609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-opab 4051 df-xp 4617 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |