ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssrel2 Unicode version

Theorem ssrel2 4701
Description: A subclass relationship depends only on a relation's ordered pairs. This version of ssrel 4699 is restricted to the relation's domain. (Contributed by Thierry Arnoux, 25-Jan-2018.)
Assertion
Ref Expression
ssrel2  |-  ( R 
C_  ( A  X.  B )  ->  ( R  C_  S  <->  A. x  e.  A  A. y  e.  B  ( <. x ,  y >.  e.  R  -> 
<. x ,  y >.  e.  S ) ) )
Distinct variable groups:    x, y, A   
x, B, y    x, R, y    x, S, y

Proof of Theorem ssrel2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 ssel 3141 . . . 4  |-  ( R 
C_  S  ->  ( <. x ,  y >.  e.  R  ->  <. x ,  y >.  e.  S
) )
21a1d 22 . . 3  |-  ( R 
C_  S  ->  (
( x  e.  A  /\  y  e.  B
)  ->  ( <. x ,  y >.  e.  R  -> 
<. x ,  y >.  e.  S ) ) )
32ralrimivv 2551 . 2  |-  ( R 
C_  S  ->  A. x  e.  A  A. y  e.  B  ( <. x ,  y >.  e.  R  -> 
<. x ,  y >.  e.  S ) )
4 eleq1 2233 . . . . . . . . . . . 12  |-  ( z  =  <. x ,  y
>.  ->  ( z  e.  R  <->  <. x ,  y
>.  e.  R ) )
5 eleq1 2233 . . . . . . . . . . . 12  |-  ( z  =  <. x ,  y
>.  ->  ( z  e.  S  <->  <. x ,  y
>.  e.  S ) )
64, 5imbi12d 233 . . . . . . . . . . 11  |-  ( z  =  <. x ,  y
>.  ->  ( ( z  e.  R  ->  z  e.  S )  <->  ( <. x ,  y >.  e.  R  -> 
<. x ,  y >.  e.  S ) ) )
76biimprcd 159 . . . . . . . . . 10  |-  ( (
<. x ,  y >.  e.  R  ->  <. x ,  y >.  e.  S
)  ->  ( z  =  <. x ,  y
>.  ->  ( z  e.  R  ->  z  e.  S ) ) )
87ralimi 2533 . . . . . . . . 9  |-  ( A. y  e.  B  ( <. x ,  y >.  e.  R  ->  <. x ,  y >.  e.  S
)  ->  A. y  e.  B  ( z  =  <. x ,  y
>.  ->  ( z  e.  R  ->  z  e.  S ) ) )
98ralimi 2533 . . . . . . . 8  |-  ( A. x  e.  A  A. y  e.  B  ( <. x ,  y >.  e.  R  ->  <. x ,  y >.  e.  S
)  ->  A. x  e.  A  A. y  e.  B  ( z  =  <. x ,  y
>.  ->  ( z  e.  R  ->  z  e.  S ) ) )
10 r19.23v 2579 . . . . . . . . . 10  |-  ( A. y  e.  B  (
z  =  <. x ,  y >.  ->  (
z  e.  R  -> 
z  e.  S ) )  <->  ( E. y  e.  B  z  =  <. x ,  y >.  ->  ( z  e.  R  ->  z  e.  S ) ) )
1110ralbii 2476 . . . . . . . . 9  |-  ( A. x  e.  A  A. y  e.  B  (
z  =  <. x ,  y >.  ->  (
z  e.  R  -> 
z  e.  S ) )  <->  A. x  e.  A  ( E. y  e.  B  z  =  <. x ,  y >.  ->  ( z  e.  R  ->  z  e.  S ) ) )
12 r19.23v 2579 . . . . . . . . 9  |-  ( A. x  e.  A  ( E. y  e.  B  z  =  <. x ,  y >.  ->  ( z  e.  R  ->  z  e.  S ) )  <->  ( E. x  e.  A  E. y  e.  B  z  =  <. x ,  y
>.  ->  ( z  e.  R  ->  z  e.  S ) ) )
1311, 12bitri 183 . . . . . . . 8  |-  ( A. x  e.  A  A. y  e.  B  (
z  =  <. x ,  y >.  ->  (
z  e.  R  -> 
z  e.  S ) )  <->  ( E. x  e.  A  E. y  e.  B  z  =  <. x ,  y >.  ->  ( z  e.  R  ->  z  e.  S ) ) )
149, 13sylib 121 . . . . . . 7  |-  ( A. x  e.  A  A. y  e.  B  ( <. x ,  y >.  e.  R  ->  <. x ,  y >.  e.  S
)  ->  ( E. x  e.  A  E. y  e.  B  z  =  <. x ,  y
>.  ->  ( z  e.  R  ->  z  e.  S ) ) )
1514com23 78 . . . . . 6  |-  ( A. x  e.  A  A. y  e.  B  ( <. x ,  y >.  e.  R  ->  <. x ,  y >.  e.  S
)  ->  ( z  e.  R  ->  ( E. x  e.  A  E. y  e.  B  z  =  <. x ,  y
>.  ->  z  e.  S
) ) )
1615a2d 26 . . . . 5  |-  ( A. x  e.  A  A. y  e.  B  ( <. x ,  y >.  e.  R  ->  <. x ,  y >.  e.  S
)  ->  ( (
z  e.  R  ->  E. x  e.  A  E. y  e.  B  z  =  <. x ,  y >. )  ->  (
z  e.  R  -> 
z  e.  S ) ) )
1716alimdv 1872 . . . 4  |-  ( A. x  e.  A  A. y  e.  B  ( <. x ,  y >.  e.  R  ->  <. x ,  y >.  e.  S
)  ->  ( A. z ( z  e.  R  ->  E. x  e.  A  E. y  e.  B  z  =  <. x ,  y >.
)  ->  A. z
( z  e.  R  ->  z  e.  S ) ) )
18 dfss2 3136 . . . . 5  |-  ( R 
C_  ( A  X.  B )  <->  A. z
( z  e.  R  ->  z  e.  ( A  X.  B ) ) )
19 elxp2 4629 . . . . . . 7  |-  ( z  e.  ( A  X.  B )  <->  E. x  e.  A  E. y  e.  B  z  =  <. x ,  y >.
)
2019imbi2i 225 . . . . . 6  |-  ( ( z  e.  R  -> 
z  e.  ( A  X.  B ) )  <-> 
( z  e.  R  ->  E. x  e.  A  E. y  e.  B  z  =  <. x ,  y >. ) )
2120albii 1463 . . . . 5  |-  ( A. z ( z  e.  R  ->  z  e.  ( A  X.  B
) )  <->  A. z
( z  e.  R  ->  E. x  e.  A  E. y  e.  B  z  =  <. x ,  y >. ) )
2218, 21bitri 183 . . . 4  |-  ( R 
C_  ( A  X.  B )  <->  A. z
( z  e.  R  ->  E. x  e.  A  E. y  e.  B  z  =  <. x ,  y >. ) )
23 dfss2 3136 . . . 4  |-  ( R 
C_  S  <->  A. z
( z  e.  R  ->  z  e.  S ) )
2417, 22, 233imtr4g 204 . . 3  |-  ( A. x  e.  A  A. y  e.  B  ( <. x ,  y >.  e.  R  ->  <. x ,  y >.  e.  S
)  ->  ( R  C_  ( A  X.  B
)  ->  R  C_  S
) )
2524com12 30 . 2  |-  ( R 
C_  ( A  X.  B )  ->  ( A. x  e.  A  A. y  e.  B  ( <. x ,  y
>.  e.  R  ->  <. x ,  y >.  e.  S
)  ->  R  C_  S
) )
263, 25impbid2 142 1  |-  ( R 
C_  ( A  X.  B )  ->  ( R  C_  S  <->  A. x  e.  A  A. y  e.  B  ( <. x ,  y >.  e.  R  -> 
<. x ,  y >.  e.  S ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1346    = wceq 1348    e. wcel 2141   A.wral 2448   E.wrex 2449    C_ wss 3121   <.cop 3586    X. cxp 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-opab 4051  df-xp 4617
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator