| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssrel2 | Unicode version | ||
| Description: A subclass relationship depends only on a relation's ordered pairs. This version of ssrel 4806 is restricted to the relation's domain. (Contributed by Thierry Arnoux, 25-Jan-2018.) |
| Ref | Expression |
|---|---|
| ssrel2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3218 |
. . . 4
| |
| 2 | 1 | a1d 22 |
. . 3
|
| 3 | 2 | ralrimivv 2611 |
. 2
|
| 4 | eleq1 2292 |
. . . . . . . . . . . 12
| |
| 5 | eleq1 2292 |
. . . . . . . . . . . 12
| |
| 6 | 4, 5 | imbi12d 234 |
. . . . . . . . . . 11
|
| 7 | 6 | biimprcd 160 |
. . . . . . . . . 10
|
| 8 | 7 | ralimi 2593 |
. . . . . . . . 9
|
| 9 | 8 | ralimi 2593 |
. . . . . . . 8
|
| 10 | r19.23v 2640 |
. . . . . . . . . 10
| |
| 11 | 10 | ralbii 2536 |
. . . . . . . . 9
|
| 12 | r19.23v 2640 |
. . . . . . . . 9
| |
| 13 | 11, 12 | bitri 184 |
. . . . . . . 8
|
| 14 | 9, 13 | sylib 122 |
. . . . . . 7
|
| 15 | 14 | com23 78 |
. . . . . 6
|
| 16 | 15 | a2d 26 |
. . . . 5
|
| 17 | 16 | alimdv 1925 |
. . . 4
|
| 18 | ssalel 3212 |
. . . . 5
| |
| 19 | elxp2 4736 |
. . . . . . 7
| |
| 20 | 19 | imbi2i 226 |
. . . . . 6
|
| 21 | 20 | albii 1516 |
. . . . 5
|
| 22 | 18, 21 | bitri 184 |
. . . 4
|
| 23 | ssalel 3212 |
. . . 4
| |
| 24 | 17, 22, 23 | 3imtr4g 205 |
. . 3
|
| 25 | 24 | com12 30 |
. 2
|
| 26 | 3, 25 | impbid2 143 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-opab 4145 df-xp 4724 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |