Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssrel2 | Unicode version |
Description: A subclass relationship depends only on a relation's ordered pairs. This version of ssrel 4692 is restricted to the relation's domain. (Contributed by Thierry Arnoux, 25-Jan-2018.) |
Ref | Expression |
---|---|
ssrel2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3136 | . . . 4 | |
2 | 1 | a1d 22 | . . 3 |
3 | 2 | ralrimivv 2547 | . 2 |
4 | eleq1 2229 | . . . . . . . . . . . 12 | |
5 | eleq1 2229 | . . . . . . . . . . . 12 | |
6 | 4, 5 | imbi12d 233 | . . . . . . . . . . 11 |
7 | 6 | biimprcd 159 | . . . . . . . . . 10 |
8 | 7 | ralimi 2529 | . . . . . . . . 9 |
9 | 8 | ralimi 2529 | . . . . . . . 8 |
10 | r19.23v 2575 | . . . . . . . . . 10 | |
11 | 10 | ralbii 2472 | . . . . . . . . 9 |
12 | r19.23v 2575 | . . . . . . . . 9 | |
13 | 11, 12 | bitri 183 | . . . . . . . 8 |
14 | 9, 13 | sylib 121 | . . . . . . 7 |
15 | 14 | com23 78 | . . . . . 6 |
16 | 15 | a2d 26 | . . . . 5 |
17 | 16 | alimdv 1867 | . . . 4 |
18 | dfss2 3131 | . . . . 5 | |
19 | elxp2 4622 | . . . . . . 7 | |
20 | 19 | imbi2i 225 | . . . . . 6 |
21 | 20 | albii 1458 | . . . . 5 |
22 | 18, 21 | bitri 183 | . . . 4 |
23 | dfss2 3131 | . . . 4 | |
24 | 17, 22, 23 | 3imtr4g 204 | . . 3 |
25 | 24 | com12 30 | . 2 |
26 | 3, 25 | impbid2 142 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1341 wceq 1343 wcel 2136 wral 2444 wrex 2445 wss 3116 cop 3579 cxp 4602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-opab 4044 df-xp 4610 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |