ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssrel2 Unicode version

Theorem ssrel2 4765
Description: A subclass relationship depends only on a relation's ordered pairs. This version of ssrel 4763 is restricted to the relation's domain. (Contributed by Thierry Arnoux, 25-Jan-2018.)
Assertion
Ref Expression
ssrel2  |-  ( R 
C_  ( A  X.  B )  ->  ( R  C_  S  <->  A. x  e.  A  A. y  e.  B  ( <. x ,  y >.  e.  R  -> 
<. x ,  y >.  e.  S ) ) )
Distinct variable groups:    x, y, A   
x, B, y    x, R, y    x, S, y

Proof of Theorem ssrel2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 ssel 3187 . . . 4  |-  ( R 
C_  S  ->  ( <. x ,  y >.  e.  R  ->  <. x ,  y >.  e.  S
) )
21a1d 22 . . 3  |-  ( R 
C_  S  ->  (
( x  e.  A  /\  y  e.  B
)  ->  ( <. x ,  y >.  e.  R  -> 
<. x ,  y >.  e.  S ) ) )
32ralrimivv 2587 . 2  |-  ( R 
C_  S  ->  A. x  e.  A  A. y  e.  B  ( <. x ,  y >.  e.  R  -> 
<. x ,  y >.  e.  S ) )
4 eleq1 2268 . . . . . . . . . . . 12  |-  ( z  =  <. x ,  y
>.  ->  ( z  e.  R  <->  <. x ,  y
>.  e.  R ) )
5 eleq1 2268 . . . . . . . . . . . 12  |-  ( z  =  <. x ,  y
>.  ->  ( z  e.  S  <->  <. x ,  y
>.  e.  S ) )
64, 5imbi12d 234 . . . . . . . . . . 11  |-  ( z  =  <. x ,  y
>.  ->  ( ( z  e.  R  ->  z  e.  S )  <->  ( <. x ,  y >.  e.  R  -> 
<. x ,  y >.  e.  S ) ) )
76biimprcd 160 . . . . . . . . . 10  |-  ( (
<. x ,  y >.  e.  R  ->  <. x ,  y >.  e.  S
)  ->  ( z  =  <. x ,  y
>.  ->  ( z  e.  R  ->  z  e.  S ) ) )
87ralimi 2569 . . . . . . . . 9  |-  ( A. y  e.  B  ( <. x ,  y >.  e.  R  ->  <. x ,  y >.  e.  S
)  ->  A. y  e.  B  ( z  =  <. x ,  y
>.  ->  ( z  e.  R  ->  z  e.  S ) ) )
98ralimi 2569 . . . . . . . 8  |-  ( A. x  e.  A  A. y  e.  B  ( <. x ,  y >.  e.  R  ->  <. x ,  y >.  e.  S
)  ->  A. x  e.  A  A. y  e.  B  ( z  =  <. x ,  y
>.  ->  ( z  e.  R  ->  z  e.  S ) ) )
10 r19.23v 2615 . . . . . . . . . 10  |-  ( A. y  e.  B  (
z  =  <. x ,  y >.  ->  (
z  e.  R  -> 
z  e.  S ) )  <->  ( E. y  e.  B  z  =  <. x ,  y >.  ->  ( z  e.  R  ->  z  e.  S ) ) )
1110ralbii 2512 . . . . . . . . 9  |-  ( A. x  e.  A  A. y  e.  B  (
z  =  <. x ,  y >.  ->  (
z  e.  R  -> 
z  e.  S ) )  <->  A. x  e.  A  ( E. y  e.  B  z  =  <. x ,  y >.  ->  ( z  e.  R  ->  z  e.  S ) ) )
12 r19.23v 2615 . . . . . . . . 9  |-  ( A. x  e.  A  ( E. y  e.  B  z  =  <. x ,  y >.  ->  ( z  e.  R  ->  z  e.  S ) )  <->  ( E. x  e.  A  E. y  e.  B  z  =  <. x ,  y
>.  ->  ( z  e.  R  ->  z  e.  S ) ) )
1311, 12bitri 184 . . . . . . . 8  |-  ( A. x  e.  A  A. y  e.  B  (
z  =  <. x ,  y >.  ->  (
z  e.  R  -> 
z  e.  S ) )  <->  ( E. x  e.  A  E. y  e.  B  z  =  <. x ,  y >.  ->  ( z  e.  R  ->  z  e.  S ) ) )
149, 13sylib 122 . . . . . . 7  |-  ( A. x  e.  A  A. y  e.  B  ( <. x ,  y >.  e.  R  ->  <. x ,  y >.  e.  S
)  ->  ( E. x  e.  A  E. y  e.  B  z  =  <. x ,  y
>.  ->  ( z  e.  R  ->  z  e.  S ) ) )
1514com23 78 . . . . . 6  |-  ( A. x  e.  A  A. y  e.  B  ( <. x ,  y >.  e.  R  ->  <. x ,  y >.  e.  S
)  ->  ( z  e.  R  ->  ( E. x  e.  A  E. y  e.  B  z  =  <. x ,  y
>.  ->  z  e.  S
) ) )
1615a2d 26 . . . . 5  |-  ( A. x  e.  A  A. y  e.  B  ( <. x ,  y >.  e.  R  ->  <. x ,  y >.  e.  S
)  ->  ( (
z  e.  R  ->  E. x  e.  A  E. y  e.  B  z  =  <. x ,  y >. )  ->  (
z  e.  R  -> 
z  e.  S ) ) )
1716alimdv 1902 . . . 4  |-  ( A. x  e.  A  A. y  e.  B  ( <. x ,  y >.  e.  R  ->  <. x ,  y >.  e.  S
)  ->  ( A. z ( z  e.  R  ->  E. x  e.  A  E. y  e.  B  z  =  <. x ,  y >.
)  ->  A. z
( z  e.  R  ->  z  e.  S ) ) )
18 ssalel 3181 . . . . 5  |-  ( R 
C_  ( A  X.  B )  <->  A. z
( z  e.  R  ->  z  e.  ( A  X.  B ) ) )
19 elxp2 4693 . . . . . . 7  |-  ( z  e.  ( A  X.  B )  <->  E. x  e.  A  E. y  e.  B  z  =  <. x ,  y >.
)
2019imbi2i 226 . . . . . 6  |-  ( ( z  e.  R  -> 
z  e.  ( A  X.  B ) )  <-> 
( z  e.  R  ->  E. x  e.  A  E. y  e.  B  z  =  <. x ,  y >. ) )
2120albii 1493 . . . . 5  |-  ( A. z ( z  e.  R  ->  z  e.  ( A  X.  B
) )  <->  A. z
( z  e.  R  ->  E. x  e.  A  E. y  e.  B  z  =  <. x ,  y >. ) )
2218, 21bitri 184 . . . 4  |-  ( R 
C_  ( A  X.  B )  <->  A. z
( z  e.  R  ->  E. x  e.  A  E. y  e.  B  z  =  <. x ,  y >. ) )
23 ssalel 3181 . . . 4  |-  ( R 
C_  S  <->  A. z
( z  e.  R  ->  z  e.  S ) )
2417, 22, 233imtr4g 205 . . 3  |-  ( A. x  e.  A  A. y  e.  B  ( <. x ,  y >.  e.  R  ->  <. x ,  y >.  e.  S
)  ->  ( R  C_  ( A  X.  B
)  ->  R  C_  S
) )
2524com12 30 . 2  |-  ( R 
C_  ( A  X.  B )  ->  ( A. x  e.  A  A. y  e.  B  ( <. x ,  y
>.  e.  R  ->  <. x ,  y >.  e.  S
)  ->  R  C_  S
) )
263, 25impbid2 143 1  |-  ( R 
C_  ( A  X.  B )  ->  ( R  C_  S  <->  A. x  e.  A  A. y  e.  B  ( <. x ,  y >.  e.  R  -> 
<. x ,  y >.  e.  S ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1371    = wceq 1373    e. wcel 2176   A.wral 2484   E.wrex 2485    C_ wss 3166   <.cop 3636    X. cxp 4673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-opab 4106  df-xp 4681
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator