Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-omind Unicode version

Theorem bj-omind 15907
Description:  om is an inductive class. (Contributed by BJ, 30-Nov-2019.)
Assertion
Ref Expression
bj-omind  |- Ind  om

Proof of Theorem bj-omind
StepHypRef Expression
1 bj-indint 15904 . 2  |- Ind  |^| { x  e.  _V  | Ind  x }
2 bj-dfom 15906 . . . 4  |-  om  =  |^| { x  | Ind  x }
3 rabab 2793 . . . . 5  |-  { x  e.  _V  | Ind  x }  =  { x  | Ind  x }
43inteqi 3889 . . . 4  |-  |^| { x  e.  _V  | Ind  x }  =  |^| { x  | Ind  x }
52, 4eqtr4i 2229 . . 3  |-  om  =  |^| { x  e.  _V  | Ind  x }
6 bj-indeq 15902 . . 3  |-  ( om  =  |^| { x  e.  _V  | Ind  x }  ->  (Ind  om  <-> Ind  |^| { x  e. 
_V  | Ind  x }
) )
75, 6ax-mp 5 . 2  |-  (Ind  om  <-> Ind  |^| { x  e.  _V  | Ind  x } )
81, 7mpbir 146 1  |- Ind  om
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1373   {cab 2191   {crab 2488   _Vcvv 2772   |^|cint 3885   omcom 4639  Ind wind 15899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-nul 4171  ax-pr 4254  ax-un 4481  ax-bd0 15786  ax-bdor 15789  ax-bdex 15792  ax-bdeq 15793  ax-bdel 15794  ax-bdsb 15795  ax-bdsep 15857
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-dif 3168  df-un 3170  df-nul 3461  df-sn 3639  df-pr 3640  df-uni 3851  df-int 3886  df-suc 4419  df-iom 4640  df-bdc 15814  df-bj-ind 15900
This theorem is referenced by:  bj-om  15910  bj-peano2  15912  peano5set  15913
  Copyright terms: Public domain W3C validator