ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabxmdc Unicode version

Theorem rabxmdc 3492
Description: Law of excluded middle given decidability, in terms of restricted class abstractions. (Contributed by Jim Kingdon, 2-Aug-2018.)
Assertion
Ref Expression
rabxmdc  |-  ( A. xDECID  ph 
->  A  =  ( { x  e.  A  |  ph }  u.  {
x  e.  A  |  -.  ph } ) )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem rabxmdc
StepHypRef Expression
1 exmiddc 838 . . . . . 6  |-  (DECID  ph  ->  (
ph  \/  -.  ph )
)
21a1d 22 . . . . 5  |-  (DECID  ph  ->  ( x  e.  A  -> 
( ph  \/  -.  ph ) ) )
32alimi 1478 . . . 4  |-  ( A. xDECID  ph 
->  A. x ( x  e.  A  ->  ( ph  \/  -.  ph )
) )
4 df-ral 2489 . . . 4  |-  ( A. x  e.  A  ( ph  \/  -.  ph )  <->  A. x ( x  e.  A  ->  ( ph  \/  -.  ph ) ) )
53, 4sylibr 134 . . 3  |-  ( A. xDECID  ph 
->  A. x  e.  A  ( ph  \/  -.  ph ) )
6 rabid2 2683 . . 3  |-  ( A  =  { x  e.  A  |  ( ph  \/  -.  ph ) }  <->  A. x  e.  A  ( ph  \/  -.  ph ) )
75, 6sylibr 134 . 2  |-  ( A. xDECID  ph 
->  A  =  {
x  e.  A  | 
( ph  \/  -.  ph ) } )
8 unrab 3444 . 2  |-  ( { x  e.  A  |  ph }  u.  { x  e.  A  |  -.  ph } )  =  {
x  e.  A  | 
( ph  \/  -.  ph ) }
97, 8eqtr4di 2256 1  |-  ( A. xDECID  ph 
->  A  =  ( { x  e.  A  |  ph }  u.  {
x  e.  A  |  -.  ph } ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 710  DECID wdc 836   A.wal 1371    = wceq 1373    e. wcel 2176   A.wral 2484   {crab 2488    u. cun 3164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-dc 837  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rab 2493  df-v 2774  df-un 3170
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator