ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabxmdc Unicode version

Theorem rabxmdc 3360
Description: Law of excluded middle given decidability, in terms of restricted class abstractions. (Contributed by Jim Kingdon, 2-Aug-2018.)
Assertion
Ref Expression
rabxmdc  |-  ( A. xDECID  ph 
->  A  =  ( { x  e.  A  |  ph }  u.  {
x  e.  A  |  -.  ph } ) )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem rabxmdc
StepHypRef Expression
1 exmiddc 804 . . . . . 6  |-  (DECID  ph  ->  (
ph  \/  -.  ph )
)
21a1d 22 . . . . 5  |-  (DECID  ph  ->  ( x  e.  A  -> 
( ph  \/  -.  ph ) ) )
32alimi 1414 . . . 4  |-  ( A. xDECID  ph 
->  A. x ( x  e.  A  ->  ( ph  \/  -.  ph )
) )
4 df-ral 2395 . . . 4  |-  ( A. x  e.  A  ( ph  \/  -.  ph )  <->  A. x ( x  e.  A  ->  ( ph  \/  -.  ph ) ) )
53, 4sylibr 133 . . 3  |-  ( A. xDECID  ph 
->  A. x  e.  A  ( ph  \/  -.  ph ) )
6 rabid2 2581 . . 3  |-  ( A  =  { x  e.  A  |  ( ph  \/  -.  ph ) }  <->  A. x  e.  A  ( ph  \/  -.  ph ) )
75, 6sylibr 133 . 2  |-  ( A. xDECID  ph 
->  A  =  {
x  e.  A  | 
( ph  \/  -.  ph ) } )
8 unrab 3313 . 2  |-  ( { x  e.  A  |  ph }  u.  { x  e.  A  |  -.  ph } )  =  {
x  e.  A  | 
( ph  \/  -.  ph ) }
97, 8syl6eqr 2165 1  |-  ( A. xDECID  ph 
->  A  =  ( { x  e.  A  |  ph }  u.  {
x  e.  A  |  -.  ph } ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 680  DECID wdc 802   A.wal 1312    = wceq 1314    e. wcel 1463   A.wral 2390   {crab 2394    u. cun 3035
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-dc 803  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ral 2395  df-rab 2399  df-v 2659  df-un 3041
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator