ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabxmdc Unicode version

Theorem rabxmdc 3389
Description: Law of excluded middle given decidability, in terms of restricted class abstractions. (Contributed by Jim Kingdon, 2-Aug-2018.)
Assertion
Ref Expression
rabxmdc  |-  ( A. xDECID  ph 
->  A  =  ( { x  e.  A  |  ph }  u.  {
x  e.  A  |  -.  ph } ) )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem rabxmdc
StepHypRef Expression
1 exmiddc 821 . . . . . 6  |-  (DECID  ph  ->  (
ph  \/  -.  ph )
)
21a1d 22 . . . . 5  |-  (DECID  ph  ->  ( x  e.  A  -> 
( ph  \/  -.  ph ) ) )
32alimi 1431 . . . 4  |-  ( A. xDECID  ph 
->  A. x ( x  e.  A  ->  ( ph  \/  -.  ph )
) )
4 df-ral 2419 . . . 4  |-  ( A. x  e.  A  ( ph  \/  -.  ph )  <->  A. x ( x  e.  A  ->  ( ph  \/  -.  ph ) ) )
53, 4sylibr 133 . . 3  |-  ( A. xDECID  ph 
->  A. x  e.  A  ( ph  \/  -.  ph ) )
6 rabid2 2605 . . 3  |-  ( A  =  { x  e.  A  |  ( ph  \/  -.  ph ) }  <->  A. x  e.  A  ( ph  \/  -.  ph ) )
75, 6sylibr 133 . 2  |-  ( A. xDECID  ph 
->  A  =  {
x  e.  A  | 
( ph  \/  -.  ph ) } )
8 unrab 3342 . 2  |-  ( { x  e.  A  |  ph }  u.  { x  e.  A  |  -.  ph } )  =  {
x  e.  A  | 
( ph  \/  -.  ph ) }
97, 8syl6eqr 2188 1  |-  ( A. xDECID  ph 
->  A  =  ( { x  e.  A  |  ph }  u.  {
x  e.  A  |  -.  ph } ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 697  DECID wdc 819   A.wal 1329    = wceq 1331    e. wcel 1480   A.wral 2414   {crab 2418    u. cun 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119
This theorem depends on definitions:  df-bi 116  df-dc 820  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rab 2423  df-v 2683  df-un 3070
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator