Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rabxmdc | Unicode version |
Description: Law of excluded middle given decidability, in terms of restricted class abstractions. (Contributed by Jim Kingdon, 2-Aug-2018.) |
Ref | Expression |
---|---|
rabxmdc | DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmiddc 826 | . . . . . 6 DECID | |
2 | 1 | a1d 22 | . . . . 5 DECID |
3 | 2 | alimi 1443 | . . . 4 DECID |
4 | df-ral 2449 | . . . 4 | |
5 | 3, 4 | sylibr 133 | . . 3 DECID |
6 | rabid2 2642 | . . 3 | |
7 | 5, 6 | sylibr 133 | . 2 DECID |
8 | unrab 3393 | . 2 | |
9 | 7, 8 | eqtr4di 2217 | 1 DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wo 698 DECID wdc 824 wal 1341 wceq 1343 wcel 2136 wral 2444 crab 2448 cun 3114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rab 2453 df-v 2728 df-un 3120 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |