ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inrab Unicode version

Theorem inrab 3399
Description: Intersection of two restricted class abstractions. (Contributed by NM, 1-Sep-2006.)
Assertion
Ref Expression
inrab  |-  ( { x  e.  A  |  ph }  i^i  { x  e.  A  |  ps } )  =  {
x  e.  A  | 
( ph  /\  ps ) }

Proof of Theorem inrab
StepHypRef Expression
1 df-rab 2457 . . 3  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
2 df-rab 2457 . . 3  |-  { x  e.  A  |  ps }  =  { x  |  ( x  e.  A  /\  ps ) }
31, 2ineq12i 3326 . 2  |-  ( { x  e.  A  |  ph }  i^i  { x  e.  A  |  ps } )  =  ( { x  |  ( x  e.  A  /\  ph ) }  i^i  {
x  |  ( x  e.  A  /\  ps ) } )
4 df-rab 2457 . . 3  |-  { x  e.  A  |  ( ph  /\  ps ) }  =  { x  |  ( x  e.  A  /\  ( ph  /\  ps ) ) }
5 inab 3395 . . . 4  |-  ( { x  |  ( x  e.  A  /\  ph ) }  i^i  { x  |  ( x  e.  A  /\  ps ) } )  =  {
x  |  ( ( x  e.  A  /\  ph )  /\  ( x  e.  A  /\  ps ) ) }
6 anandi 585 . . . . 5  |-  ( ( x  e.  A  /\  ( ph  /\  ps )
)  <->  ( ( x  e.  A  /\  ph )  /\  ( x  e.  A  /\  ps )
) )
76abbii 2286 . . . 4  |-  { x  |  ( x  e.  A  /\  ( ph  /\ 
ps ) ) }  =  { x  |  ( ( x  e.  A  /\  ph )  /\  ( x  e.  A  /\  ps ) ) }
85, 7eqtr4i 2194 . . 3  |-  ( { x  |  ( x  e.  A  /\  ph ) }  i^i  { x  |  ( x  e.  A  /\  ps ) } )  =  {
x  |  ( x  e.  A  /\  ( ph  /\  ps ) ) }
94, 8eqtr4i 2194 . 2  |-  { x  e.  A  |  ( ph  /\  ps ) }  =  ( { x  |  ( x  e.  A  /\  ph ) }  i^i  { x  |  ( x  e.  A  /\  ps ) } )
103, 9eqtr4i 2194 1  |-  ( { x  e.  A  |  ph }  i^i  { x  e.  A  |  ps } )  =  {
x  e.  A  | 
( ph  /\  ps ) }
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1348    e. wcel 2141   {cab 2156   {crab 2452    i^i cin 3120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rab 2457  df-v 2732  df-in 3127
This theorem is referenced by:  rabnc  3447  iooinsup  11240  phiprmpw  12176  unennn  12352
  Copyright terms: Public domain W3C validator