ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralab Unicode version

Theorem ralab 2920
Description: Universal quantification over a class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypothesis
Ref Expression
ralab.1  |-  ( y  =  x  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
ralab  |-  ( A. x  e.  { y  |  ph } ch  <->  A. x
( ps  ->  ch ) )
Distinct variable groups:    x, y    ps, y
Allowed substitution hints:    ph( x, y)    ps( x)    ch( x, y)

Proof of Theorem ralab
StepHypRef Expression
1 df-ral 2477 . 2  |-  ( A. x  e.  { y  |  ph } ch  <->  A. x
( x  e.  {
y  |  ph }  ->  ch ) )
2 vex 2763 . . . . 5  |-  x  e. 
_V
3 ralab.1 . . . . 5  |-  ( y  =  x  ->  ( ph 
<->  ps ) )
42, 3elab 2904 . . . 4  |-  ( x  e.  { y  | 
ph }  <->  ps )
54imbi1i 238 . . 3  |-  ( ( x  e.  { y  |  ph }  ->  ch )  <->  ( ps  ->  ch ) )
65albii 1481 . 2  |-  ( A. x ( x  e. 
{ y  |  ph }  ->  ch )  <->  A. x
( ps  ->  ch ) )
71, 6bitri 184 1  |-  ( A. x  e.  { y  |  ph } ch  <->  A. x
( ps  ->  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1362    e. wcel 2164   {cab 2179   A.wral 2472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762
This theorem is referenced by:  funcnvuni  5323  ralrnmpo  6033  pitonn  7908
  Copyright terms: Public domain W3C validator