ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralab GIF version

Theorem ralab 2909
Description: Universal quantification over a class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypothesis
Ref Expression
ralab.1 (𝑦 = 𝑥 → (𝜑𝜓))
Assertion
Ref Expression
ralab (∀𝑥 ∈ {𝑦𝜑}𝜒 ↔ ∀𝑥(𝜓𝜒))
Distinct variable groups:   𝑥,𝑦   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥)   𝜒(𝑥,𝑦)

Proof of Theorem ralab
StepHypRef Expression
1 df-ral 2470 . 2 (∀𝑥 ∈ {𝑦𝜑}𝜒 ↔ ∀𝑥(𝑥 ∈ {𝑦𝜑} → 𝜒))
2 vex 2752 . . . . 5 𝑥 ∈ V
3 ralab.1 . . . . 5 (𝑦 = 𝑥 → (𝜑𝜓))
42, 3elab 2893 . . . 4 (𝑥 ∈ {𝑦𝜑} ↔ 𝜓)
54imbi1i 238 . . 3 ((𝑥 ∈ {𝑦𝜑} → 𝜒) ↔ (𝜓𝜒))
65albii 1480 . 2 (∀𝑥(𝑥 ∈ {𝑦𝜑} → 𝜒) ↔ ∀𝑥(𝜓𝜒))
71, 6bitri 184 1 (∀𝑥 ∈ {𝑦𝜑}𝜒 ↔ ∀𝑥(𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1361  wcel 2158  {cab 2173  wral 2465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-v 2751
This theorem is referenced by:  funcnvuni  5297  ralrnmpo  6002  pitonn  7860
  Copyright terms: Public domain W3C validator