ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pitonn Unicode version

Theorem pitonn 7847
Description: Mapping from  N. to  NN. (Contributed by Jim Kingdon, 22-Apr-2020.)
Assertion
Ref Expression
pitonn  |-  ( N  e.  N.  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } )
Distinct variable groups:    N, l, u   
y, l, u    x, y
Allowed substitution hints:    N( x, y)

Proof of Theorem pitonn
Dummy variables  w  z  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 3779 . . . . . . . . . . . . . . 15  |-  ( w  =  1o  ->  <. w ,  1o >.  =  <. 1o ,  1o >. )
21eceq1d 6571 . . . . . . . . . . . . . 14  |-  ( w  =  1o  ->  [ <. w ,  1o >. ]  ~Q  =  [ <. 1o ,  1o >. ]  ~Q  )
32breq2d 4016 . . . . . . . . . . . . 13  |-  ( w  =  1o  ->  (
l  <Q  [ <. w ,  1o >. ]  ~Q  <->  l  <Q  [
<. 1o ,  1o >. ]  ~Q  ) )
43abbidv 2295 . . . . . . . . . . . 12  |-  ( w  =  1o  ->  { l  |  l  <Q  [ <. w ,  1o >. ]  ~Q  }  =  { l  |  l  <Q  [ <. 1o ,  1o >. ]  ~Q  }
)
52breq1d 4014 . . . . . . . . . . . . 13  |-  ( w  =  1o  ->  ( [ <. w ,  1o >. ]  ~Q  <Q  u  <->  [
<. 1o ,  1o >. ]  ~Q  <Q  u )
)
65abbidv 2295 . . . . . . . . . . . 12  |-  ( w  =  1o  ->  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u }  =  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } )
74, 6opeq12d 3787 . . . . . . . . . . 11  |-  ( w  =  1o  ->  <. { l  |  l  <Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  =  <. { l  |  l  <Q  [ <. 1o ,  1o >. ]  ~Q  } ,  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } >. )
87oveq1d 5890 . . . . . . . . . 10  |-  ( w  =  1o  ->  ( <. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  =  ( <. { l  |  l  <Q  [ <. 1o ,  1o >. ]  ~Q  } ,  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) )
98opeq1d 3785 . . . . . . . . 9  |-  ( w  =  1o  ->  <. ( <. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >.  =  <. (
<. { l  |  l 
<Q  [ <. 1o ,  1o >. ]  ~Q  } ,  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. )
109eceq1d 6571 . . . . . . . 8  |-  ( w  =  1o  ->  [ <. (
<. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( <. { l  |  l  <Q  [ <. 1o ,  1o >. ]  ~Q  } ,  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
1110opeq1d 3785 . . . . . . 7  |-  ( w  =  1o  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  <. [ <. (
<. { l  |  l 
<Q  [ <. 1o ,  1o >. ]  ~Q  } ,  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
1211eleq1d 2246 . . . . . 6  |-  ( w  =  1o  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z  <->  <. [ <. (
<. { l  |  l 
<Q  [ <. 1o ,  1o >. ]  ~Q  } ,  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z ) )
1312imbi2d 230 . . . . 5  |-  ( w  =  1o  ->  (
( ( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z )  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z )  <-> 
( ( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z )  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. 1o ,  1o >. ]  ~Q  } ,  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z ) ) )
14 opeq1 3779 . . . . . . . . . . . . . . 15  |-  ( w  =  k  ->  <. w ,  1o >.  =  <. k ,  1o >. )
1514eceq1d 6571 . . . . . . . . . . . . . 14  |-  ( w  =  k  ->  [ <. w ,  1o >. ]  ~Q  =  [ <. k ,  1o >. ]  ~Q  )
1615breq2d 4016 . . . . . . . . . . . . 13  |-  ( w  =  k  ->  (
l  <Q  [ <. w ,  1o >. ]  ~Q  <->  l  <Q  [
<. k ,  1o >. ]  ~Q  ) )
1716abbidv 2295 . . . . . . . . . . . 12  |-  ( w  =  k  ->  { l  |  l  <Q  [ <. w ,  1o >. ]  ~Q  }  =  { l  |  l  <Q  [ <. k ,  1o >. ]  ~Q  }
)
1815breq1d 4014 . . . . . . . . . . . . 13  |-  ( w  =  k  ->  ( [ <. w ,  1o >. ]  ~Q  <Q  u  <->  [
<. k ,  1o >. ]  ~Q  <Q  u )
)
1918abbidv 2295 . . . . . . . . . . . 12  |-  ( w  =  k  ->  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u }  =  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } )
2017, 19opeq12d 3787 . . . . . . . . . . 11  |-  ( w  =  k  ->  <. { l  |  l  <Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  =  <. { l  |  l  <Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >. )
2120oveq1d 5890 . . . . . . . . . 10  |-  ( w  =  k  ->  ( <. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  =  ( <. { l  |  l  <Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) )
2221opeq1d 3785 . . . . . . . . 9  |-  ( w  =  k  ->  <. ( <. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >.  =  <. (
<. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. )
2322eceq1d 6571 . . . . . . . 8  |-  ( w  =  k  ->  [ <. (
<. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( <. { l  |  l  <Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
2423opeq1d 3785 . . . . . . 7  |-  ( w  =  k  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  <. [ <. (
<. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
2524eleq1d 2246 . . . . . 6  |-  ( w  =  k  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z  <->  <. [ <. (
<. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z ) )
2625imbi2d 230 . . . . 5  |-  ( w  =  k  ->  (
( ( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z )  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z )  <-> 
( ( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z )  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z ) ) )
27 opeq1 3779 . . . . . . . . . . . . . . 15  |-  ( w  =  ( k  +N  1o )  ->  <. w ,  1o >.  =  <. ( k  +N  1o ) ,  1o >. )
2827eceq1d 6571 . . . . . . . . . . . . . 14  |-  ( w  =  ( k  +N  1o )  ->  [ <. w ,  1o >. ]  ~Q  =  [ <. ( k  +N  1o ) ,  1o >. ]  ~Q  )
2928breq2d 4016 . . . . . . . . . . . . 13  |-  ( w  =  ( k  +N  1o )  ->  (
l  <Q  [ <. w ,  1o >. ]  ~Q  <->  l  <Q  [
<. ( k  +N  1o ) ,  1o >. ]  ~Q  ) )
3029abbidv 2295 . . . . . . . . . . . 12  |-  ( w  =  ( k  +N  1o )  ->  { l  |  l  <Q  [ <. w ,  1o >. ]  ~Q  }  =  { l  |  l  <Q  [ <. (
k  +N  1o ) ,  1o >. ]  ~Q  } )
3128breq1d 4014 . . . . . . . . . . . . 13  |-  ( w  =  ( k  +N  1o )  ->  ( [ <. w ,  1o >. ]  ~Q  <Q  u  <->  [
<. ( k  +N  1o ) ,  1o >. ]  ~Q  <Q  u ) )
3231abbidv 2295 . . . . . . . . . . . 12  |-  ( w  =  ( k  +N  1o )  ->  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u }  =  { u  |  [ <. ( k  +N  1o ) ,  1o >. ]  ~Q  <Q  u } )
3330, 32opeq12d 3787 . . . . . . . . . . 11  |-  ( w  =  ( k  +N  1o )  ->  <. { l  |  l  <Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  =  <. { l  |  l  <Q  [ <. ( k  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( k  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >. )
3433oveq1d 5890 . . . . . . . . . 10  |-  ( w  =  ( k  +N  1o )  ->  ( <. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  =  ( <. { l  |  l  <Q  [ <. (
k  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( k  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )
)
3534opeq1d 3785 . . . . . . . . 9  |-  ( w  =  ( k  +N  1o )  ->  <. ( <. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >.  =  <. (
<. { l  |  l 
<Q  [ <. ( k  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( k  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. )
3635eceq1d 6571 . . . . . . . 8  |-  ( w  =  ( k  +N  1o )  ->  [ <. (
<. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( <. { l  |  l  <Q  [ <. ( k  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( k  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
3736opeq1d 3785 . . . . . . 7  |-  ( w  =  ( k  +N  1o )  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  <. [ <. (
<. { l  |  l 
<Q  [ <. ( k  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( k  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
3837eleq1d 2246 . . . . . 6  |-  ( w  =  ( k  +N  1o )  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z  <->  <. [ <. (
<. { l  |  l 
<Q  [ <. ( k  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( k  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z
) )
3938imbi2d 230 . . . . 5  |-  ( w  =  ( k  +N  1o )  ->  (
( ( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z )  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z )  <-> 
( ( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z )  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. ( k  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( k  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z
) ) )
40 opeq1 3779 . . . . . . . . . . . . . . 15  |-  ( w  =  N  ->  <. w ,  1o >.  =  <. N ,  1o >. )
4140eceq1d 6571 . . . . . . . . . . . . . 14  |-  ( w  =  N  ->  [ <. w ,  1o >. ]  ~Q  =  [ <. N ,  1o >. ]  ~Q  )
4241breq2d 4016 . . . . . . . . . . . . 13  |-  ( w  =  N  ->  (
l  <Q  [ <. w ,  1o >. ]  ~Q  <->  l  <Q  [
<. N ,  1o >. ]  ~Q  ) )
4342abbidv 2295 . . . . . . . . . . . 12  |-  ( w  =  N  ->  { l  |  l  <Q  [ <. w ,  1o >. ]  ~Q  }  =  { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  }
)
4441breq1d 4014 . . . . . . . . . . . . 13  |-  ( w  =  N  ->  ( [ <. w ,  1o >. ]  ~Q  <Q  u  <->  [
<. N ,  1o >. ]  ~Q  <Q  u )
)
4544abbidv 2295 . . . . . . . . . . . 12  |-  ( w  =  N  ->  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u }  =  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } )
4643, 45opeq12d 3787 . . . . . . . . . . 11  |-  ( w  =  N  ->  <. { l  |  l  <Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  =  <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >. )
4746oveq1d 5890 . . . . . . . . . 10  |-  ( w  =  N  ->  ( <. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  =  ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) )
4847opeq1d 3785 . . . . . . . . 9  |-  ( w  =  N  ->  <. ( <. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >.  =  <. (
<. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. )
4948eceq1d 6571 . . . . . . . 8  |-  ( w  =  N  ->  [ <. (
<. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
5049opeq1d 3785 . . . . . . 7  |-  ( w  =  N  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  <. [ <. (
<. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
5150eleq1d 2246 . . . . . 6  |-  ( w  =  N  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z  <->  <. [ <. (
<. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z ) )
5251imbi2d 230 . . . . 5  |-  ( w  =  N  ->  (
( ( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z )  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z )  <-> 
( ( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z )  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z ) ) )
53 pitonnlem1 7844 . . . . . . . 8  |-  <. [ <. (
<. { l  |  l 
<Q  [ <. 1o ,  1o >. ]  ~Q  } ,  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  1
5453eleq1i 2243 . . . . . . 7  |-  ( <. [ <. ( <. { l  |  l  <Q  [ <. 1o ,  1o >. ]  ~Q  } ,  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z  <->  1  e.  z )
5554biimpri 133 . . . . . 6  |-  ( 1  e.  z  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. 1o ,  1o >. ]  ~Q  } ,  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z )
5655adantr 276 . . . . 5  |-  ( ( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z )  ->  <. [ <. ( <. { l  |  l  <Q  [ <. 1o ,  1o >. ]  ~Q  } ,  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z )
57 oveq1 5882 . . . . . . . . . . 11  |-  ( y  =  <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( y  +  1 )  =  ( <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  +  1 ) )
5857eleq1d 2246 . . . . . . . . . 10  |-  ( y  =  <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( (
y  +  1 )  e.  z  <->  ( <. [
<. ( <. { l  |  l  <Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  +  1 )  e.  z ) )
5958rspccv 2839 . . . . . . . . 9  |-  ( A. y  e.  z  (
y  +  1 )  e.  z  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z  -> 
( <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  +  1 )  e.  z ) )
6059ad2antll 491 . . . . . . . 8  |-  ( ( k  e.  N.  /\  ( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z ) )  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z  -> 
( <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  +  1 )  e.  z ) )
61 pitonnlem2 7846 . . . . . . . . . 10  |-  ( k  e.  N.  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  +  1 )  =  <. [ <. ( <. { l  |  l 
<Q  [ <. ( k  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( k  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
6261eleq1d 2246 . . . . . . . . 9  |-  ( k  e.  N.  ->  (
( <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  +  1 )  e.  z  <->  <. [ <. (
<. { l  |  l 
<Q  [ <. ( k  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( k  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z
) )
6362adantr 276 . . . . . . . 8  |-  ( ( k  e.  N.  /\  ( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z ) )  ->  (
( <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  +  1 )  e.  z  <->  <. [ <. (
<. { l  |  l 
<Q  [ <. ( k  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( k  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z
) )
6460, 63sylibd 149 . . . . . . 7  |-  ( ( k  e.  N.  /\  ( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z ) )  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z  ->  <. [ <. ( <. { l  |  l  <Q  [ <. ( k  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( k  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z ) )
6564ex 115 . . . . . 6  |-  ( k  e.  N.  ->  (
( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z )  ->  ( <. [
<. ( <. { l  |  l  <Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z  ->  <. [ <. ( <. { l  |  l  <Q  [ <. ( k  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( k  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z ) ) )
6665a2d 26 . . . . 5  |-  ( k  e.  N.  ->  (
( ( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z )  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z )  ->  ( ( 1  e.  z  /\  A. y  e.  z  (
y  +  1 )  e.  z )  ->  <. [ <. ( <. { l  |  l  <Q  [ <. ( k  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( k  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z ) ) )
6713, 26, 39, 52, 56, 66indpi 7341 . . . 4  |-  ( N  e.  N.  ->  (
( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z )  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z ) )
6867alrimiv 1874 . . 3  |-  ( N  e.  N.  ->  A. z
( ( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z )  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z ) )
69 eleq2 2241 . . . . 5  |-  ( x  =  z  ->  (
1  e.  x  <->  1  e.  z ) )
70 eleq2 2241 . . . . . 6  |-  ( x  =  z  ->  (
( y  +  1 )  e.  x  <->  ( y  +  1 )  e.  z ) )
7170raleqbi1dv 2681 . . . . 5  |-  ( x  =  z  ->  ( A. y  e.  x  ( y  +  1 )  e.  x  <->  A. y  e.  z  ( y  +  1 )  e.  z ) )
7269, 71anbi12d 473 . . . 4  |-  ( x  =  z  ->  (
( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x )  <-> 
( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z ) ) )
7372ralab 2898 . . 3  |-  ( A. z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } <. [
<. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z  <->  A. z
( ( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z )  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z ) )
7468, 73sylibr 134 . 2  |-  ( N  e.  N.  ->  A. z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
<. [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z )
75 nnprlu 7552 . . . . . . 7  |-  ( N  e.  N.  ->  <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  e.  P. )
76 1pr 7553 . . . . . . 7  |-  1P  e.  P.
77 addclpr 7536 . . . . . . 7  |-  ( (
<. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  e.  P.  /\  1P  e.  P. )  ->  ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e. 
P. )
7875, 76, 77sylancl 413 . . . . . 6  |-  ( N  e.  N.  ->  ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e. 
P. )
79 opelxpi 4659 . . . . . 6  |-  ( ( ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e. 
P.  /\  1P  e.  P. )  ->  <. ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >.  e.  ( P.  X.  P. ) )
8078, 76, 79sylancl 413 . . . . 5  |-  ( N  e.  N.  ->  <. ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >.  e.  ( P.  X.  P. ) )
81 enrex 7736 . . . . . 6  |-  ~R  e.  _V
8281ecelqsi 6589 . . . . 5  |-  ( <.
( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >.  e.  ( P.  X.  P. )  ->  [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )
)
8380, 82syl 14 . . . 4  |-  ( N  e.  N.  ->  [ <. (
<. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )
)
84 0r 7749 . . . 4  |-  0R  e.  R.
85 opelxpi 4659 . . . 4  |-  ( ( [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  0R  e.  R. )  -> 
<. [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  ( ( ( P.  X.  P. ) /.  ~R  )  X. 
R. ) )
8683, 84, 85sylancl 413 . . 3  |-  ( N  e.  N.  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  ( ( ( P.  X.  P. ) /.  ~R  )  X. 
R. ) )
87 elintg 3853 . . 3  |-  ( <. [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  ( ( ( P.  X.  P. ) /.  ~R  )  X. 
R. )  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  <->  A. z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
<. [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z ) )
8886, 87syl 14 . 2  |-  ( N  e.  N.  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  <->  A. z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
<. [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z ) )
8974, 88mpbird 167 1  |-  ( N  e.  N.  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1351    = wceq 1353    e. wcel 2148   {cab 2163   A.wral 2455   <.cop 3596   |^|cint 3845   class class class wbr 4004    X. cxp 4625  (class class class)co 5875   1oc1o 6410   [cec 6533   /.cqs 6534   N.cnpi 7271    +N cpli 7272    ~Q ceq 7278    <Q cltq 7284   P.cnp 7290   1Pc1p 7291    +P. cpp 7292    ~R cer 7295   R.cnr 7296   0Rc0r 7297   1c1 7812    + caddc 7814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-eprel 4290  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-irdg 6371  df-1o 6417  df-2o 6418  df-oadd 6421  df-omul 6422  df-er 6535  df-ec 6537  df-qs 6541  df-ni 7303  df-pli 7304  df-mi 7305  df-lti 7306  df-plpq 7343  df-mpq 7344  df-enq 7346  df-nqqs 7347  df-plqqs 7348  df-mqqs 7349  df-1nqqs 7350  df-rq 7351  df-ltnqqs 7352  df-enq0 7423  df-nq0 7424  df-0nq0 7425  df-plq0 7426  df-mq0 7427  df-inp 7465  df-i1p 7466  df-iplp 7467  df-enr 7725  df-nr 7726  df-plr 7727  df-0r 7730  df-1r 7731  df-c 7817  df-1 7819  df-add 7822
This theorem is referenced by:  axarch  7890  axcaucvglemcl  7894  axcaucvglemval  7896  axcaucvglemcau  7897  axcaucvglemres  7898
  Copyright terms: Public domain W3C validator