ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pitonn Unicode version

Theorem pitonn 7910
Description: Mapping from  N. to  NN. (Contributed by Jim Kingdon, 22-Apr-2020.)
Assertion
Ref Expression
pitonn  |-  ( N  e.  N.  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } )
Distinct variable groups:    N, l, u   
y, l, u    x, y
Allowed substitution hints:    N( x, y)

Proof of Theorem pitonn
Dummy variables  w  z  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 3805 . . . . . . . . . . . . . . 15  |-  ( w  =  1o  ->  <. w ,  1o >.  =  <. 1o ,  1o >. )
21eceq1d 6625 . . . . . . . . . . . . . 14  |-  ( w  =  1o  ->  [ <. w ,  1o >. ]  ~Q  =  [ <. 1o ,  1o >. ]  ~Q  )
32breq2d 4042 . . . . . . . . . . . . 13  |-  ( w  =  1o  ->  (
l  <Q  [ <. w ,  1o >. ]  ~Q  <->  l  <Q  [
<. 1o ,  1o >. ]  ~Q  ) )
43abbidv 2311 . . . . . . . . . . . 12  |-  ( w  =  1o  ->  { l  |  l  <Q  [ <. w ,  1o >. ]  ~Q  }  =  { l  |  l  <Q  [ <. 1o ,  1o >. ]  ~Q  }
)
52breq1d 4040 . . . . . . . . . . . . 13  |-  ( w  =  1o  ->  ( [ <. w ,  1o >. ]  ~Q  <Q  u  <->  [
<. 1o ,  1o >. ]  ~Q  <Q  u )
)
65abbidv 2311 . . . . . . . . . . . 12  |-  ( w  =  1o  ->  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u }  =  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } )
74, 6opeq12d 3813 . . . . . . . . . . 11  |-  ( w  =  1o  ->  <. { l  |  l  <Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  =  <. { l  |  l  <Q  [ <. 1o ,  1o >. ]  ~Q  } ,  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } >. )
87oveq1d 5934 . . . . . . . . . 10  |-  ( w  =  1o  ->  ( <. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  =  ( <. { l  |  l  <Q  [ <. 1o ,  1o >. ]  ~Q  } ,  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) )
98opeq1d 3811 . . . . . . . . 9  |-  ( w  =  1o  ->  <. ( <. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >.  =  <. (
<. { l  |  l 
<Q  [ <. 1o ,  1o >. ]  ~Q  } ,  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. )
109eceq1d 6625 . . . . . . . 8  |-  ( w  =  1o  ->  [ <. (
<. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( <. { l  |  l  <Q  [ <. 1o ,  1o >. ]  ~Q  } ,  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
1110opeq1d 3811 . . . . . . 7  |-  ( w  =  1o  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  <. [ <. (
<. { l  |  l 
<Q  [ <. 1o ,  1o >. ]  ~Q  } ,  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
1211eleq1d 2262 . . . . . 6  |-  ( w  =  1o  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z  <->  <. [ <. (
<. { l  |  l 
<Q  [ <. 1o ,  1o >. ]  ~Q  } ,  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z ) )
1312imbi2d 230 . . . . 5  |-  ( w  =  1o  ->  (
( ( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z )  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z )  <-> 
( ( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z )  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. 1o ,  1o >. ]  ~Q  } ,  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z ) ) )
14 opeq1 3805 . . . . . . . . . . . . . . 15  |-  ( w  =  k  ->  <. w ,  1o >.  =  <. k ,  1o >. )
1514eceq1d 6625 . . . . . . . . . . . . . 14  |-  ( w  =  k  ->  [ <. w ,  1o >. ]  ~Q  =  [ <. k ,  1o >. ]  ~Q  )
1615breq2d 4042 . . . . . . . . . . . . 13  |-  ( w  =  k  ->  (
l  <Q  [ <. w ,  1o >. ]  ~Q  <->  l  <Q  [
<. k ,  1o >. ]  ~Q  ) )
1716abbidv 2311 . . . . . . . . . . . 12  |-  ( w  =  k  ->  { l  |  l  <Q  [ <. w ,  1o >. ]  ~Q  }  =  { l  |  l  <Q  [ <. k ,  1o >. ]  ~Q  }
)
1815breq1d 4040 . . . . . . . . . . . . 13  |-  ( w  =  k  ->  ( [ <. w ,  1o >. ]  ~Q  <Q  u  <->  [
<. k ,  1o >. ]  ~Q  <Q  u )
)
1918abbidv 2311 . . . . . . . . . . . 12  |-  ( w  =  k  ->  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u }  =  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } )
2017, 19opeq12d 3813 . . . . . . . . . . 11  |-  ( w  =  k  ->  <. { l  |  l  <Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  =  <. { l  |  l  <Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >. )
2120oveq1d 5934 . . . . . . . . . 10  |-  ( w  =  k  ->  ( <. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  =  ( <. { l  |  l  <Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) )
2221opeq1d 3811 . . . . . . . . 9  |-  ( w  =  k  ->  <. ( <. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >.  =  <. (
<. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. )
2322eceq1d 6625 . . . . . . . 8  |-  ( w  =  k  ->  [ <. (
<. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( <. { l  |  l  <Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
2423opeq1d 3811 . . . . . . 7  |-  ( w  =  k  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  <. [ <. (
<. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
2524eleq1d 2262 . . . . . 6  |-  ( w  =  k  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z  <->  <. [ <. (
<. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z ) )
2625imbi2d 230 . . . . 5  |-  ( w  =  k  ->  (
( ( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z )  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z )  <-> 
( ( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z )  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z ) ) )
27 opeq1 3805 . . . . . . . . . . . . . . 15  |-  ( w  =  ( k  +N  1o )  ->  <. w ,  1o >.  =  <. ( k  +N  1o ) ,  1o >. )
2827eceq1d 6625 . . . . . . . . . . . . . 14  |-  ( w  =  ( k  +N  1o )  ->  [ <. w ,  1o >. ]  ~Q  =  [ <. ( k  +N  1o ) ,  1o >. ]  ~Q  )
2928breq2d 4042 . . . . . . . . . . . . 13  |-  ( w  =  ( k  +N  1o )  ->  (
l  <Q  [ <. w ,  1o >. ]  ~Q  <->  l  <Q  [
<. ( k  +N  1o ) ,  1o >. ]  ~Q  ) )
3029abbidv 2311 . . . . . . . . . . . 12  |-  ( w  =  ( k  +N  1o )  ->  { l  |  l  <Q  [ <. w ,  1o >. ]  ~Q  }  =  { l  |  l  <Q  [ <. (
k  +N  1o ) ,  1o >. ]  ~Q  } )
3128breq1d 4040 . . . . . . . . . . . . 13  |-  ( w  =  ( k  +N  1o )  ->  ( [ <. w ,  1o >. ]  ~Q  <Q  u  <->  [
<. ( k  +N  1o ) ,  1o >. ]  ~Q  <Q  u ) )
3231abbidv 2311 . . . . . . . . . . . 12  |-  ( w  =  ( k  +N  1o )  ->  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u }  =  { u  |  [ <. ( k  +N  1o ) ,  1o >. ]  ~Q  <Q  u } )
3330, 32opeq12d 3813 . . . . . . . . . . 11  |-  ( w  =  ( k  +N  1o )  ->  <. { l  |  l  <Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  =  <. { l  |  l  <Q  [ <. ( k  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( k  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >. )
3433oveq1d 5934 . . . . . . . . . 10  |-  ( w  =  ( k  +N  1o )  ->  ( <. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  =  ( <. { l  |  l  <Q  [ <. (
k  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( k  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )
)
3534opeq1d 3811 . . . . . . . . 9  |-  ( w  =  ( k  +N  1o )  ->  <. ( <. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >.  =  <. (
<. { l  |  l 
<Q  [ <. ( k  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( k  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. )
3635eceq1d 6625 . . . . . . . 8  |-  ( w  =  ( k  +N  1o )  ->  [ <. (
<. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( <. { l  |  l  <Q  [ <. ( k  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( k  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
3736opeq1d 3811 . . . . . . 7  |-  ( w  =  ( k  +N  1o )  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  <. [ <. (
<. { l  |  l 
<Q  [ <. ( k  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( k  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
3837eleq1d 2262 . . . . . 6  |-  ( w  =  ( k  +N  1o )  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z  <->  <. [ <. (
<. { l  |  l 
<Q  [ <. ( k  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( k  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z
) )
3938imbi2d 230 . . . . 5  |-  ( w  =  ( k  +N  1o )  ->  (
( ( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z )  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z )  <-> 
( ( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z )  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. ( k  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( k  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z
) ) )
40 opeq1 3805 . . . . . . . . . . . . . . 15  |-  ( w  =  N  ->  <. w ,  1o >.  =  <. N ,  1o >. )
4140eceq1d 6625 . . . . . . . . . . . . . 14  |-  ( w  =  N  ->  [ <. w ,  1o >. ]  ~Q  =  [ <. N ,  1o >. ]  ~Q  )
4241breq2d 4042 . . . . . . . . . . . . 13  |-  ( w  =  N  ->  (
l  <Q  [ <. w ,  1o >. ]  ~Q  <->  l  <Q  [
<. N ,  1o >. ]  ~Q  ) )
4342abbidv 2311 . . . . . . . . . . . 12  |-  ( w  =  N  ->  { l  |  l  <Q  [ <. w ,  1o >. ]  ~Q  }  =  { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  }
)
4441breq1d 4040 . . . . . . . . . . . . 13  |-  ( w  =  N  ->  ( [ <. w ,  1o >. ]  ~Q  <Q  u  <->  [
<. N ,  1o >. ]  ~Q  <Q  u )
)
4544abbidv 2311 . . . . . . . . . . . 12  |-  ( w  =  N  ->  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u }  =  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } )
4643, 45opeq12d 3813 . . . . . . . . . . 11  |-  ( w  =  N  ->  <. { l  |  l  <Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  =  <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >. )
4746oveq1d 5934 . . . . . . . . . 10  |-  ( w  =  N  ->  ( <. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  =  ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) )
4847opeq1d 3811 . . . . . . . . 9  |-  ( w  =  N  ->  <. ( <. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >.  =  <. (
<. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. )
4948eceq1d 6625 . . . . . . . 8  |-  ( w  =  N  ->  [ <. (
<. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
5049opeq1d 3811 . . . . . . 7  |-  ( w  =  N  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  <. [ <. (
<. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
5150eleq1d 2262 . . . . . 6  |-  ( w  =  N  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z  <->  <. [ <. (
<. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z ) )
5251imbi2d 230 . . . . 5  |-  ( w  =  N  ->  (
( ( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z )  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. w ,  1o >. ]  ~Q  } ,  { u  |  [ <. w ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z )  <-> 
( ( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z )  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z ) ) )
53 pitonnlem1 7907 . . . . . . . 8  |-  <. [ <. (
<. { l  |  l 
<Q  [ <. 1o ,  1o >. ]  ~Q  } ,  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  1
5453eleq1i 2259 . . . . . . 7  |-  ( <. [ <. ( <. { l  |  l  <Q  [ <. 1o ,  1o >. ]  ~Q  } ,  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z  <->  1  e.  z )
5554biimpri 133 . . . . . 6  |-  ( 1  e.  z  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. 1o ,  1o >. ]  ~Q  } ,  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z )
5655adantr 276 . . . . 5  |-  ( ( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z )  ->  <. [ <. ( <. { l  |  l  <Q  [ <. 1o ,  1o >. ]  ~Q  } ,  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z )
57 oveq1 5926 . . . . . . . . . . 11  |-  ( y  =  <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( y  +  1 )  =  ( <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  +  1 ) )
5857eleq1d 2262 . . . . . . . . . 10  |-  ( y  =  <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( (
y  +  1 )  e.  z  <->  ( <. [
<. ( <. { l  |  l  <Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  +  1 )  e.  z ) )
5958rspccv 2862 . . . . . . . . 9  |-  ( A. y  e.  z  (
y  +  1 )  e.  z  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z  -> 
( <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  +  1 )  e.  z ) )
6059ad2antll 491 . . . . . . . 8  |-  ( ( k  e.  N.  /\  ( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z ) )  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z  -> 
( <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  +  1 )  e.  z ) )
61 pitonnlem2 7909 . . . . . . . . . 10  |-  ( k  e.  N.  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  +  1 )  =  <. [ <. ( <. { l  |  l 
<Q  [ <. ( k  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( k  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
6261eleq1d 2262 . . . . . . . . 9  |-  ( k  e.  N.  ->  (
( <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  +  1 )  e.  z  <->  <. [ <. (
<. { l  |  l 
<Q  [ <. ( k  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( k  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z
) )
6362adantr 276 . . . . . . . 8  |-  ( ( k  e.  N.  /\  ( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z ) )  ->  (
( <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  +  1 )  e.  z  <->  <. [ <. (
<. { l  |  l 
<Q  [ <. ( k  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( k  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z
) )
6460, 63sylibd 149 . . . . . . 7  |-  ( ( k  e.  N.  /\  ( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z ) )  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z  ->  <. [ <. ( <. { l  |  l  <Q  [ <. ( k  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( k  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z ) )
6564ex 115 . . . . . 6  |-  ( k  e.  N.  ->  (
( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z )  ->  ( <. [
<. ( <. { l  |  l  <Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z  ->  <. [ <. ( <. { l  |  l  <Q  [ <. ( k  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( k  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z ) ) )
6665a2d 26 . . . . 5  |-  ( k  e.  N.  ->  (
( ( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z )  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z )  ->  ( ( 1  e.  z  /\  A. y  e.  z  (
y  +  1 )  e.  z )  ->  <. [ <. ( <. { l  |  l  <Q  [ <. ( k  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( k  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z ) ) )
6713, 26, 39, 52, 56, 66indpi 7404 . . . 4  |-  ( N  e.  N.  ->  (
( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z )  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z ) )
6867alrimiv 1885 . . 3  |-  ( N  e.  N.  ->  A. z
( ( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z )  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z ) )
69 eleq2 2257 . . . . 5  |-  ( x  =  z  ->  (
1  e.  x  <->  1  e.  z ) )
70 eleq2 2257 . . . . . 6  |-  ( x  =  z  ->  (
( y  +  1 )  e.  x  <->  ( y  +  1 )  e.  z ) )
7170raleqbi1dv 2702 . . . . 5  |-  ( x  =  z  ->  ( A. y  e.  x  ( y  +  1 )  e.  x  <->  A. y  e.  z  ( y  +  1 )  e.  z ) )
7269, 71anbi12d 473 . . . 4  |-  ( x  =  z  ->  (
( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x )  <-> 
( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z ) ) )
7372ralab 2921 . . 3  |-  ( A. z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } <. [
<. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z  <->  A. z
( ( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z )  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z ) )
7468, 73sylibr 134 . 2  |-  ( N  e.  N.  ->  A. z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
<. [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z )
75 nnprlu 7615 . . . . . . 7  |-  ( N  e.  N.  ->  <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  e.  P. )
76 1pr 7616 . . . . . . 7  |-  1P  e.  P.
77 addclpr 7599 . . . . . . 7  |-  ( (
<. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  e.  P.  /\  1P  e.  P. )  ->  ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e. 
P. )
7875, 76, 77sylancl 413 . . . . . 6  |-  ( N  e.  N.  ->  ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e. 
P. )
79 opelxpi 4692 . . . . . 6  |-  ( ( ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e. 
P.  /\  1P  e.  P. )  ->  <. ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >.  e.  ( P.  X.  P. ) )
8078, 76, 79sylancl 413 . . . . 5  |-  ( N  e.  N.  ->  <. ( <. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >.  e.  ( P.  X.  P. ) )
81 enrex 7799 . . . . . 6  |-  ~R  e.  _V
8281ecelqsi 6645 . . . . 5  |-  ( <.
( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >.  e.  ( P.  X.  P. )  ->  [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )
)
8380, 82syl 14 . . . 4  |-  ( N  e.  N.  ->  [ <. (
<. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )
)
84 0r 7812 . . . 4  |-  0R  e.  R.
85 opelxpi 4692 . . . 4  |-  ( ( [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  0R  e.  R. )  -> 
<. [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  ( ( ( P.  X.  P. ) /.  ~R  )  X. 
R. ) )
8683, 84, 85sylancl 413 . . 3  |-  ( N  e.  N.  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  ( ( ( P.  X.  P. ) /.  ~R  )  X. 
R. ) )
87 elintg 3879 . . 3  |-  ( <. [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  ( ( ( P.  X.  P. ) /.  ~R  )  X. 
R. )  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  <->  A. z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
<. [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z ) )
8886, 87syl 14 . 2  |-  ( N  e.  N.  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  <->  A. z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
<. [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  z ) )
8974, 88mpbird 167 1  |-  ( N  e.  N.  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1362    = wceq 1364    e. wcel 2164   {cab 2179   A.wral 2472   <.cop 3622   |^|cint 3871   class class class wbr 4030    X. cxp 4658  (class class class)co 5919   1oc1o 6464   [cec 6587   /.cqs 6588   N.cnpi 7334    +N cpli 7335    ~Q ceq 7341    <Q cltq 7347   P.cnp 7353   1Pc1p 7354    +P. cpp 7355    ~R cer 7358   R.cnr 7359   0Rc0r 7360   1c1 7875    + caddc 7877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-eprel 4321  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-1o 6471  df-2o 6472  df-oadd 6475  df-omul 6476  df-er 6589  df-ec 6591  df-qs 6595  df-ni 7366  df-pli 7367  df-mi 7368  df-lti 7369  df-plpq 7406  df-mpq 7407  df-enq 7409  df-nqqs 7410  df-plqqs 7411  df-mqqs 7412  df-1nqqs 7413  df-rq 7414  df-ltnqqs 7415  df-enq0 7486  df-nq0 7487  df-0nq0 7488  df-plq0 7489  df-mq0 7490  df-inp 7528  df-i1p 7529  df-iplp 7530  df-enr 7788  df-nr 7789  df-plr 7790  df-0r 7793  df-1r 7794  df-c 7880  df-1 7882  df-add 7885
This theorem is referenced by:  axarch  7953  axcaucvglemcl  7957  axcaucvglemval  7959  axcaucvglemcau  7960  axcaucvglemres  7961
  Copyright terms: Public domain W3C validator