ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzprval Unicode version

Theorem fzprval 10107
Description: Two ways of defining the first two values of a sequence on 
NN. (Contributed by NM, 5-Sep-2011.)
Assertion
Ref Expression
fzprval  |-  ( A. x  e.  ( 1 ... 2 ) ( F `  x )  =  if ( x  =  1 ,  A ,  B )  <->  ( ( F `  1 )  =  A  /\  ( F `  2 )  =  B ) )
Distinct variable groups:    x, A    x, B    x, F

Proof of Theorem fzprval
StepHypRef Expression
1 1z 9304 . . . . 5  |-  1  e.  ZZ
2 fzpr 10102 . . . . 5  |-  ( 1  e.  ZZ  ->  (
1 ... ( 1  +  1 ) )  =  { 1 ,  ( 1  +  1 ) } )
31, 2ax-mp 5 . . . 4  |-  ( 1 ... ( 1  +  1 ) )  =  { 1 ,  ( 1  +  1 ) }
4 df-2 9003 . . . . 5  |-  2  =  ( 1  +  1 )
54oveq2i 5903 . . . 4  |-  ( 1 ... 2 )  =  ( 1 ... (
1  +  1 ) )
64preq2i 3688 . . . 4  |-  { 1 ,  2 }  =  { 1 ,  ( 1  +  1 ) }
73, 5, 63eqtr4i 2220 . . 3  |-  ( 1 ... 2 )  =  { 1 ,  2 }
87raleqi 2690 . 2  |-  ( A. x  e.  ( 1 ... 2 ) ( F `  x )  =  if ( x  =  1 ,  A ,  B )  <->  A. x  e.  { 1 ,  2 }  ( F `  x )  =  if ( x  =  1 ,  A ,  B
) )
9 1ex 7977 . . 3  |-  1  e.  _V
10 2ex 9016 . . 3  |-  2  e.  _V
11 fveq2 5531 . . . 4  |-  ( x  =  1  ->  ( F `  x )  =  ( F ` 
1 ) )
12 iftrue 3554 . . . 4  |-  ( x  =  1  ->  if ( x  =  1 ,  A ,  B )  =  A )
1311, 12eqeq12d 2204 . . 3  |-  ( x  =  1  ->  (
( F `  x
)  =  if ( x  =  1 ,  A ,  B )  <-> 
( F `  1
)  =  A ) )
14 fveq2 5531 . . . 4  |-  ( x  =  2  ->  ( F `  x )  =  ( F ` 
2 ) )
15 1ne2 9150 . . . . . . . 8  |-  1  =/=  2
1615necomi 2445 . . . . . . 7  |-  2  =/=  1
17 pm13.181 2442 . . . . . . 7  |-  ( ( x  =  2  /\  2  =/=  1 )  ->  x  =/=  1
)
1816, 17mpan2 425 . . . . . 6  |-  ( x  =  2  ->  x  =/=  1 )
1918neneqd 2381 . . . . 5  |-  ( x  =  2  ->  -.  x  =  1 )
2019iffalsed 3559 . . . 4  |-  ( x  =  2  ->  if ( x  =  1 ,  A ,  B )  =  B )
2114, 20eqeq12d 2204 . . 3  |-  ( x  =  2  ->  (
( F `  x
)  =  if ( x  =  1 ,  A ,  B )  <-> 
( F `  2
)  =  B ) )
229, 10, 13, 21ralpr 3662 . 2  |-  ( A. x  e.  { 1 ,  2 }  ( F `  x )  =  if ( x  =  1 ,  A ,  B )  <->  ( ( F `  1 )  =  A  /\  ( F `  2 )  =  B ) )
238, 22bitri 184 1  |-  ( A. x  e.  ( 1 ... 2 ) ( F `  x )  =  if ( x  =  1 ,  A ,  B )  <->  ( ( F `  1 )  =  A  /\  ( F `  2 )  =  B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2160    =/= wne 2360   A.wral 2468   ifcif 3549   {cpr 3608   ` cfv 5232  (class class class)co 5892   1c1 7837    + caddc 7839   2c2 8995   ZZcz 9278   ...cfz 10033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-cnex 7927  ax-resscn 7928  ax-1cn 7929  ax-1re 7930  ax-icn 7931  ax-addcl 7932  ax-addrcl 7933  ax-mulcl 7934  ax-addcom 7936  ax-addass 7938  ax-distr 7940  ax-i2m1 7941  ax-0lt1 7942  ax-0id 7944  ax-rnegex 7945  ax-cnre 7947  ax-pre-ltirr 7948  ax-pre-ltwlin 7949  ax-pre-lttrn 7950  ax-pre-apti 7951  ax-pre-ltadd 7952
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5234  df-fn 5235  df-f 5236  df-fv 5240  df-riota 5848  df-ov 5895  df-oprab 5896  df-mpo 5897  df-pnf 8019  df-mnf 8020  df-xr 8021  df-ltxr 8022  df-le 8023  df-sub 8155  df-neg 8156  df-inn 8945  df-2 9003  df-n0 9202  df-z 9279  df-uz 9554  df-fz 10034
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator