ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzprval Unicode version

Theorem fzprval 10239
Description: Two ways of defining the first two values of a sequence on 
NN. (Contributed by NM, 5-Sep-2011.)
Assertion
Ref Expression
fzprval  |-  ( A. x  e.  ( 1 ... 2 ) ( F `  x )  =  if ( x  =  1 ,  A ,  B )  <->  ( ( F `  1 )  =  A  /\  ( F `  2 )  =  B ) )
Distinct variable groups:    x, A    x, B    x, F

Proof of Theorem fzprval
StepHypRef Expression
1 1z 9433 . . . . 5  |-  1  e.  ZZ
2 fzpr 10234 . . . . 5  |-  ( 1  e.  ZZ  ->  (
1 ... ( 1  +  1 ) )  =  { 1 ,  ( 1  +  1 ) } )
31, 2ax-mp 5 . . . 4  |-  ( 1 ... ( 1  +  1 ) )  =  { 1 ,  ( 1  +  1 ) }
4 df-2 9130 . . . . 5  |-  2  =  ( 1  +  1 )
54oveq2i 5978 . . . 4  |-  ( 1 ... 2 )  =  ( 1 ... (
1  +  1 ) )
64preq2i 3724 . . . 4  |-  { 1 ,  2 }  =  { 1 ,  ( 1  +  1 ) }
73, 5, 63eqtr4i 2238 . . 3  |-  ( 1 ... 2 )  =  { 1 ,  2 }
87raleqi 2709 . 2  |-  ( A. x  e.  ( 1 ... 2 ) ( F `  x )  =  if ( x  =  1 ,  A ,  B )  <->  A. x  e.  { 1 ,  2 }  ( F `  x )  =  if ( x  =  1 ,  A ,  B
) )
9 1ex 8102 . . 3  |-  1  e.  _V
10 2ex 9143 . . 3  |-  2  e.  _V
11 fveq2 5599 . . . 4  |-  ( x  =  1  ->  ( F `  x )  =  ( F ` 
1 ) )
12 iftrue 3584 . . . 4  |-  ( x  =  1  ->  if ( x  =  1 ,  A ,  B )  =  A )
1311, 12eqeq12d 2222 . . 3  |-  ( x  =  1  ->  (
( F `  x
)  =  if ( x  =  1 ,  A ,  B )  <-> 
( F `  1
)  =  A ) )
14 fveq2 5599 . . . 4  |-  ( x  =  2  ->  ( F `  x )  =  ( F ` 
2 ) )
15 1ne2 9278 . . . . . . . 8  |-  1  =/=  2
1615necomi 2463 . . . . . . 7  |-  2  =/=  1
17 pm13.181 2460 . . . . . . 7  |-  ( ( x  =  2  /\  2  =/=  1 )  ->  x  =/=  1
)
1816, 17mpan2 425 . . . . . 6  |-  ( x  =  2  ->  x  =/=  1 )
1918neneqd 2399 . . . . 5  |-  ( x  =  2  ->  -.  x  =  1 )
2019iffalsed 3589 . . . 4  |-  ( x  =  2  ->  if ( x  =  1 ,  A ,  B )  =  B )
2114, 20eqeq12d 2222 . . 3  |-  ( x  =  2  ->  (
( F `  x
)  =  if ( x  =  1 ,  A ,  B )  <-> 
( F `  2
)  =  B ) )
229, 10, 13, 21ralpr 3698 . 2  |-  ( A. x  e.  { 1 ,  2 }  ( F `  x )  =  if ( x  =  1 ,  A ,  B )  <->  ( ( F `  1 )  =  A  /\  ( F `  2 )  =  B ) )
238, 22bitri 184 1  |-  ( A. x  e.  ( 1 ... 2 ) ( F `  x )  =  if ( x  =  1 ,  A ,  B )  <->  ( ( F `  1 )  =  A  /\  ( F `  2 )  =  B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178    =/= wne 2378   A.wral 2486   ifcif 3579   {cpr 3644   ` cfv 5290  (class class class)co 5967   1c1 7961    + caddc 7963   2c2 9122   ZZcz 9407   ...cfz 10165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-2 9130  df-n0 9331  df-z 9408  df-uz 9684  df-fz 10166
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator