![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ralpr | GIF version |
Description: Convert a quantification over a pair to a conjunction. (Contributed by NM, 3-Jun-2007.) (Revised by Mario Carneiro, 23-Apr-2015.) |
Ref | Expression |
---|---|
ralpr.1 | ⊢ 𝐴 ∈ V |
ralpr.2 | ⊢ 𝐵 ∈ V |
ralpr.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
ralpr.4 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) |
Ref | Expression |
---|---|
ralpr | ⊢ (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralpr.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | ralpr.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | ralpr.3 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | ralpr.4 | . . 3 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) | |
5 | 3, 4 | ralprg 3470 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓 ∧ 𝜒))) |
6 | 1, 2, 5 | mp2an 417 | 1 ⊢ (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓 ∧ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1287 ∈ wcel 1436 ∀wral 2355 Vcvv 2614 {cpr 3426 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1379 ax-7 1380 ax-gen 1381 ax-ie1 1425 ax-ie2 1426 ax-8 1438 ax-10 1439 ax-11 1440 ax-i12 1441 ax-bndl 1442 ax-4 1443 ax-17 1462 ax-i9 1466 ax-ial 1470 ax-i5r 1471 ax-ext 2067 |
This theorem depends on definitions: df-bi 115 df-3an 924 df-tru 1290 df-nf 1393 df-sb 1690 df-clab 2072 df-cleq 2078 df-clel 2081 df-nfc 2214 df-ral 2360 df-v 2616 df-sbc 2829 df-un 2990 df-sn 3431 df-pr 3432 |
This theorem is referenced by: fzprval 9403 |
Copyright terms: Public domain | W3C validator |