ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralprg Unicode version

Theorem ralprg 3610
Description: Convert a quantification over a pair to a conjunction. (Contributed by NM, 17-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
ralprg.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
ralprg.2  |-  ( x  =  B  ->  ( ph 
<->  ch ) )
Assertion
Ref Expression
ralprg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A. x  e. 
{ A ,  B } ph  <->  ( ps  /\  ch ) ) )
Distinct variable groups:    x, A    x, B    ps, x    ch, x
Allowed substitution hints:    ph( x)    V( x)    W( x)

Proof of Theorem ralprg
StepHypRef Expression
1 df-pr 3567 . . . 4  |-  { A ,  B }  =  ( { A }  u.  { B } )
21raleqi 2656 . . 3  |-  ( A. x  e.  { A ,  B } ph  <->  A. x  e.  ( { A }  u.  { B } )
ph )
3 ralunb 3288 . . 3  |-  ( A. x  e.  ( { A }  u.  { B } ) ph  <->  ( A. x  e.  { A } ph  /\  A. x  e.  { B } ph ) )
42, 3bitri 183 . 2  |-  ( A. x  e.  { A ,  B } ph  <->  ( A. x  e.  { A } ph  /\  A. x  e.  { B } ph ) )
5 ralprg.1 . . . 4  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
65ralsng 3599 . . 3  |-  ( A  e.  V  ->  ( A. x  e.  { A } ph  <->  ps ) )
7 ralprg.2 . . . 4  |-  ( x  =  B  ->  ( ph 
<->  ch ) )
87ralsng 3599 . . 3  |-  ( B  e.  W  ->  ( A. x  e.  { B } ph  <->  ch ) )
96, 8bi2anan9 596 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( A. x  e.  { A } ph  /\ 
A. x  e.  { B } ph )  <->  ( ps  /\ 
ch ) ) )
104, 9syl5bb 191 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A. x  e. 
{ A ,  B } ph  <->  ( ps  /\  ch ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1335    e. wcel 2128   A.wral 2435    u. cun 3100   {csn 3560   {cpr 3561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-v 2714  df-sbc 2938  df-un 3106  df-sn 3566  df-pr 3567
This theorem is referenced by:  raltpg  3612  ralpr  3614  iinxprg  3923  fvinim0ffz  10133  sumpr  11303
  Copyright terms: Public domain W3C validator