| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralprg | Unicode version | ||
| Description: Convert a quantification over a pair to a conjunction. (Contributed by NM, 17-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.) |
| Ref | Expression |
|---|---|
| ralprg.1 |
|
| ralprg.2 |
|
| Ref | Expression |
|---|---|
| ralprg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr 3639 |
. . . 4
| |
| 2 | 1 | raleqi 2705 |
. . 3
|
| 3 | ralunb 3353 |
. . 3
| |
| 4 | 2, 3 | bitri 184 |
. 2
|
| 5 | ralprg.1 |
. . . 4
| |
| 6 | 5 | ralsng 3672 |
. . 3
|
| 7 | ralprg.2 |
. . . 4
| |
| 8 | 7 | ralsng 3672 |
. . 3
|
| 9 | 6, 8 | bi2anan9 606 |
. 2
|
| 10 | 4, 9 | bitrid 192 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-v 2773 df-sbc 2998 df-un 3169 df-sn 3638 df-pr 3639 |
| This theorem is referenced by: raltpg 3685 ralpr 3687 iinxprg 4001 fvinim0ffz 10351 sumpr 11643 |
| Copyright terms: Public domain | W3C validator |