Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ralprg | Unicode version |
Description: Convert a quantification over a pair to a conjunction. (Contributed by NM, 17-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.) |
Ref | Expression |
---|---|
ralprg.1 | |
ralprg.2 |
Ref | Expression |
---|---|
ralprg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 3567 | . . . 4 | |
2 | 1 | raleqi 2656 | . . 3 |
3 | ralunb 3288 | . . 3 | |
4 | 2, 3 | bitri 183 | . 2 |
5 | ralprg.1 | . . . 4 | |
6 | 5 | ralsng 3599 | . . 3 |
7 | ralprg.2 | . . . 4 | |
8 | 7 | ralsng 3599 | . . 3 |
9 | 6, 8 | bi2anan9 596 | . 2 |
10 | 4, 9 | syl5bb 191 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1335 wcel 2128 wral 2435 cun 3100 csn 3560 cpr 3561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-v 2714 df-sbc 2938 df-un 3106 df-sn 3566 df-pr 3567 |
This theorem is referenced by: raltpg 3612 ralpr 3614 iinxprg 3923 fvinim0ffz 10133 sumpr 11303 |
Copyright terms: Public domain | W3C validator |