Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reliin | GIF version |
Description: An indexed intersection is a relation if at least one of the member of the indexed family is a relation. (Contributed by NM, 8-Mar-2014.) |
Ref | Expression |
---|---|
reliin | ⊢ (∃𝑥 ∈ 𝐴 Rel 𝐵 → Rel ∩ 𝑥 ∈ 𝐴 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iinss 3924 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝐵 ⊆ (V × V) → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ (V × V)) | |
2 | df-rel 4618 | . . 3 ⊢ (Rel 𝐵 ↔ 𝐵 ⊆ (V × V)) | |
3 | 2 | rexbii 2477 | . 2 ⊢ (∃𝑥 ∈ 𝐴 Rel 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝐵 ⊆ (V × V)) |
4 | df-rel 4618 | . 2 ⊢ (Rel ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ (V × V)) | |
5 | 1, 3, 4 | 3imtr4i 200 | 1 ⊢ (∃𝑥 ∈ 𝐴 Rel 𝐵 → Rel ∩ 𝑥 ∈ 𝐴 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wrex 2449 Vcvv 2730 ⊆ wss 3121 ∩ ciin 3874 × cxp 4609 Rel wrel 4616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-in 3127 df-ss 3134 df-iin 3876 df-rel 4618 |
This theorem is referenced by: relint 4735 xpiindim 4748 |
Copyright terms: Public domain | W3C validator |