| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > reliin | GIF version | ||
| Description: An indexed intersection is a relation if at least one of the member of the indexed family is a relation. (Contributed by NM, 8-Mar-2014.) | 
| Ref | Expression | 
|---|---|
| reliin | ⊢ (∃𝑥 ∈ 𝐴 Rel 𝐵 → Rel ∩ 𝑥 ∈ 𝐴 𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | iinss 3968 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝐵 ⊆ (V × V) → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ (V × V)) | |
| 2 | df-rel 4670 | . . 3 ⊢ (Rel 𝐵 ↔ 𝐵 ⊆ (V × V)) | |
| 3 | 2 | rexbii 2504 | . 2 ⊢ (∃𝑥 ∈ 𝐴 Rel 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝐵 ⊆ (V × V)) | 
| 4 | df-rel 4670 | . 2 ⊢ (Rel ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ (V × V)) | |
| 5 | 1, 3, 4 | 3imtr4i 201 | 1 ⊢ (∃𝑥 ∈ 𝐴 Rel 𝐵 → Rel ∩ 𝑥 ∈ 𝐴 𝐵) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∃wrex 2476 Vcvv 2763 ⊆ wss 3157 ∩ ciin 3917 × cxp 4661 Rel wrel 4668 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-in 3163 df-ss 3170 df-iin 3919 df-rel 4670 | 
| This theorem is referenced by: relint 4787 xpiindim 4803 | 
| Copyright terms: Public domain | W3C validator |