ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reliin GIF version

Theorem reliin 4810
Description: An indexed intersection is a relation if at least one of the member of the indexed family is a relation. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
reliin (∃𝑥𝐴 Rel 𝐵 → Rel 𝑥𝐴 𝐵)

Proof of Theorem reliin
StepHypRef Expression
1 iinss 3988 . 2 (∃𝑥𝐴 𝐵 ⊆ (V × V) → 𝑥𝐴 𝐵 ⊆ (V × V))
2 df-rel 4695 . . 3 (Rel 𝐵𝐵 ⊆ (V × V))
32rexbii 2514 . 2 (∃𝑥𝐴 Rel 𝐵 ↔ ∃𝑥𝐴 𝐵 ⊆ (V × V))
4 df-rel 4695 . 2 (Rel 𝑥𝐴 𝐵 𝑥𝐴 𝐵 ⊆ (V × V))
51, 3, 43imtr4i 201 1 (∃𝑥𝐴 Rel 𝐵 → Rel 𝑥𝐴 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wrex 2486  Vcvv 2773  wss 3170   ciin 3937   × cxp 4686  Rel wrel 4693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-in 3176  df-ss 3183  df-iin 3939  df-rel 4695
This theorem is referenced by:  relint  4812  xpiindim  4828
  Copyright terms: Public domain W3C validator