| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpiindim | Unicode version | ||
| Description: Distributive law for cross product over indexed intersection. (Contributed by Jim Kingdon, 7-Dec-2018.) |
| Ref | Expression |
|---|---|
| xpiindim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxp 4827 |
. . . . . 6
| |
| 2 | 1 | rgenw 2585 |
. . . . 5
|
| 3 | r19.2m 3578 |
. . . . 5
| |
| 4 | 2, 3 | mpan2 425 |
. . . 4
|
| 5 | reliin 4840 |
. . . 4
| |
| 6 | 4, 5 | syl 14 |
. . 3
|
| 7 | relxp 4827 |
. . 3
| |
| 8 | 6, 7 | jctil 312 |
. 2
|
| 9 | eleq1w 2290 |
. . . . . . . 8
| |
| 10 | 9 | cbvexv 1965 |
. . . . . . 7
|
| 11 | r19.28mv 3584 |
. . . . . . 7
| |
| 12 | 10, 11 | sylbir 135 |
. . . . . 6
|
| 13 | 12 | bicomd 141 |
. . . . 5
|
| 14 | eliin 3969 |
. . . . . . 7
| |
| 15 | 14 | elv 2803 |
. . . . . 6
|
| 16 | 15 | anbi2i 457 |
. . . . 5
|
| 17 | opelxp 4748 |
. . . . . 6
| |
| 18 | 17 | ralbii 2536 |
. . . . 5
|
| 19 | 13, 16, 18 | 3bitr4g 223 |
. . . 4
|
| 20 | opelxp 4748 |
. . . 4
| |
| 21 | vex 2802 |
. . . . . 6
| |
| 22 | vex 2802 |
. . . . . 6
| |
| 23 | 21, 22 | opex 4314 |
. . . . 5
|
| 24 | eliin 3969 |
. . . . 5
| |
| 25 | 23, 24 | ax-mp 5 |
. . . 4
|
| 26 | 19, 20, 25 | 3bitr4g 223 |
. . 3
|
| 27 | 26 | eqrelrdv2 4817 |
. 2
|
| 28 | 8, 27 | mpancom 422 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-iin 3967 df-opab 4145 df-xp 4724 df-rel 4725 |
| This theorem is referenced by: xpriindim 4859 |
| Copyright terms: Public domain | W3C validator |