Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xpiindim | Unicode version |
Description: Distributive law for cross product over indexed intersection. (Contributed by Jim Kingdon, 7-Dec-2018.) |
Ref | Expression |
---|---|
xpiindim |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relxp 4713 | . . . . . 6 | |
2 | 1 | rgenw 2521 | . . . . 5 |
3 | r19.2m 3495 | . . . . 5 | |
4 | 2, 3 | mpan2 422 | . . . 4 |
5 | reliin 4726 | . . . 4 | |
6 | 4, 5 | syl 14 | . . 3 |
7 | relxp 4713 | . . 3 | |
8 | 6, 7 | jctil 310 | . 2 |
9 | eleq1w 2227 | . . . . . . . 8 | |
10 | 9 | cbvexv 1906 | . . . . . . 7 |
11 | r19.28mv 3501 | . . . . . . 7 | |
12 | 10, 11 | sylbir 134 | . . . . . 6 |
13 | 12 | bicomd 140 | . . . . 5 |
14 | eliin 3871 | . . . . . . 7 | |
15 | 14 | elv 2730 | . . . . . 6 |
16 | 15 | anbi2i 453 | . . . . 5 |
17 | opelxp 4634 | . . . . . 6 | |
18 | 17 | ralbii 2472 | . . . . 5 |
19 | 13, 16, 18 | 3bitr4g 222 | . . . 4 |
20 | opelxp 4634 | . . . 4 | |
21 | vex 2729 | . . . . . 6 | |
22 | vex 2729 | . . . . . 6 | |
23 | 21, 22 | opex 4207 | . . . . 5 |
24 | eliin 3871 | . . . . 5 | |
25 | 23, 24 | ax-mp 5 | . . . 4 |
26 | 19, 20, 25 | 3bitr4g 222 | . . 3 |
27 | 26 | eqrelrdv2 4703 | . 2 |
28 | 8, 27 | mpancom 419 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wex 1480 wcel 2136 wral 2444 wrex 2445 cvv 2726 cop 3579 ciin 3867 cxp 4602 wrel 4609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-iin 3869 df-opab 4044 df-xp 4610 df-rel 4611 |
This theorem is referenced by: xpriindim 4742 |
Copyright terms: Public domain | W3C validator |