| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > xpiindim | Unicode version | ||
| Description: Distributive law for cross product over indexed intersection. (Contributed by Jim Kingdon, 7-Dec-2018.) | 
| Ref | Expression | 
|---|---|
| xpiindim | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | relxp 4772 | 
. . . . . 6
 | |
| 2 | 1 | rgenw 2552 | 
. . . . 5
 | 
| 3 | r19.2m 3537 | 
. . . . 5
 | |
| 4 | 2, 3 | mpan2 425 | 
. . . 4
 | 
| 5 | reliin 4785 | 
. . . 4
 | |
| 6 | 4, 5 | syl 14 | 
. . 3
 | 
| 7 | relxp 4772 | 
. . 3
 | |
| 8 | 6, 7 | jctil 312 | 
. 2
 | 
| 9 | eleq1w 2257 | 
. . . . . . . 8
 | |
| 10 | 9 | cbvexv 1933 | 
. . . . . . 7
 | 
| 11 | r19.28mv 3543 | 
. . . . . . 7
 | |
| 12 | 10, 11 | sylbir 135 | 
. . . . . 6
 | 
| 13 | 12 | bicomd 141 | 
. . . . 5
 | 
| 14 | eliin 3921 | 
. . . . . . 7
 | |
| 15 | 14 | elv 2767 | 
. . . . . 6
 | 
| 16 | 15 | anbi2i 457 | 
. . . . 5
 | 
| 17 | opelxp 4693 | 
. . . . . 6
 | |
| 18 | 17 | ralbii 2503 | 
. . . . 5
 | 
| 19 | 13, 16, 18 | 3bitr4g 223 | 
. . . 4
 | 
| 20 | opelxp 4693 | 
. . . 4
 | |
| 21 | vex 2766 | 
. . . . . 6
 | |
| 22 | vex 2766 | 
. . . . . 6
 | |
| 23 | 21, 22 | opex 4262 | 
. . . . 5
 | 
| 24 | eliin 3921 | 
. . . . 5
 | |
| 25 | 23, 24 | ax-mp 5 | 
. . . 4
 | 
| 26 | 19, 20, 25 | 3bitr4g 223 | 
. . 3
 | 
| 27 | 26 | eqrelrdv2 4762 | 
. 2
 | 
| 28 | 8, 27 | mpancom 422 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-iin 3919 df-opab 4095 df-xp 4669 df-rel 4670 | 
| This theorem is referenced by: xpriindim 4804 | 
| Copyright terms: Public domain | W3C validator |