ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relopabiv GIF version

Theorem relopabiv 4786
Description: A class of ordered pairs is a relation. For a version without a disjoint variable condition, see relopabi 4788. (Contributed by BJ, 22-Jul-2023.)
Hypothesis
Ref Expression
relopabiv.1 𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
Assertion
Ref Expression
relopabiv Rel 𝐴
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem relopabiv
StepHypRef Expression
1 vex 2763 . . . . . 6 𝑥 ∈ V
2 vex 2763 . . . . . 6 𝑦 ∈ V
31, 2pm3.2i 272 . . . . 5 (𝑥 ∈ V ∧ 𝑦 ∈ V)
43a1i 9 . . . 4 (𝜑 → (𝑥 ∈ V ∧ 𝑦 ∈ V))
54ssopab2i 4309 . . 3 {⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)}
6 relopabiv.1 . . 3 𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
7 df-xp 4666 . . 3 (V × V) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)}
85, 6, 73sstr4i 3221 . 2 𝐴 ⊆ (V × V)
9 df-rel 4667 . 2 (Rel 𝐴𝐴 ⊆ (V × V))
108, 9mpbir 146 1 Rel 𝐴
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wcel 2164  Vcvv 2760  wss 3154  {copab 4090   × cxp 4658  Rel wrel 4665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-in 3160  df-ss 3167  df-opab 4092  df-xp 4666  df-rel 4667
This theorem is referenced by:  relopabv  4787  lgsquadlem1  15234  lgsquadlem2  15235
  Copyright terms: Public domain W3C validator