![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > relopabiv | GIF version |
Description: A class of ordered pairs is a relation. For a version without a disjoint variable condition, see relopabi 4787. (Contributed by BJ, 22-Jul-2023.) |
Ref | Expression |
---|---|
relopabiv.1 | ⊢ 𝐴 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
Ref | Expression |
---|---|
relopabiv | ⊢ Rel 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2763 | . . . . . 6 ⊢ 𝑥 ∈ V | |
2 | vex 2763 | . . . . . 6 ⊢ 𝑦 ∈ V | |
3 | 1, 2 | pm3.2i 272 | . . . . 5 ⊢ (𝑥 ∈ V ∧ 𝑦 ∈ V) |
4 | 3 | a1i 9 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ V ∧ 𝑦 ∈ V)) |
5 | 4 | ssopab2i 4308 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} |
6 | relopabiv.1 | . . 3 ⊢ 𝐴 = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
7 | df-xp 4665 | . . 3 ⊢ (V × V) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} | |
8 | 5, 6, 7 | 3sstr4i 3220 | . 2 ⊢ 𝐴 ⊆ (V × V) |
9 | df-rel 4666 | . 2 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
10 | 8, 9 | mpbir 146 | 1 ⊢ Rel 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ⊆ wss 3153 {copab 4089 × cxp 4657 Rel wrel 4664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-in 3159 df-ss 3166 df-opab 4091 df-xp 4665 df-rel 4666 |
This theorem is referenced by: relopabv 4786 lgsquadlem1 15191 |
Copyright terms: Public domain | W3C validator |